Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a 'two model mapping' approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September.
View Article and Find Full Text PDFTerrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale.
View Article and Find Full Text PDFBackground: Climate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario.
View Article and Find Full Text PDFHurricanes cause severe impacts on forest ecosystems in the United States. These events can substantially alter the carbon biogeochemical cycle at local to regional scales. We selected all tropical storms and more severe events that made U.
View Article and Find Full Text PDF