In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites.
View Article and Find Full Text PDFExtracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery.
View Article and Find Full Text PDFThe NIH Extracellular RNA Communication Program's initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype.
Methods: EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample.
Extracellular vesicles (EV) are small membrane-bound vesicles enriched in a selective repertoire of mRNA, miRNA, proteins and cell surface receptors from parental cells and are actively involved in the transmission of inter and intracellular signals. Cancer cells produce EV that contain cargo including DNA, mRNA, miRNA and proteins that allow EV to create epigenetic changes in target cells both locally and systemically. Cancer-derived EV play critical roles in tumorigenesis, cancer cell migration, metastasis, evasion of host immune defense, chemoresistance, and they promote a premetastatic niche favourable to micrometastatic seeding.
View Article and Find Full Text PDFHelicobacter pylori is a helical bacterium that colonizes the stomach in over half of the world's population. Infection with this bacterium has been linked to peptic ulcer disease and gastric cancer. The bacterium has been shown to affect regulatory pathways in its host cells through specific virulence factors that control gene expression.
View Article and Find Full Text PDFEvery cell type capable of proliferation can be malignantly transformed. However, there appears to be no naturally occurring universal set of genetic mutations capable of converting every cell type to a malignant state. Any specific cell type is generally resistant to transformation by the cancer mutations accumulated by cells of different lineages, presumably due to epigenetic differences.
View Article and Find Full Text PDFProstate cancer (PCa) is the most common solid tumor in males and the second leading cause of cancer-related deaths in males in the United States. The current first line therapy for metastatic PCa is androgen deprivation therapy and is initially effective against the disease. However, castrate resistant prostate cancer (CRPC) develops in many men within 18-36 months, rendering this treatment ineffective.
View Article and Find Full Text PDFRaf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding-protein (PEBP) family that modulates the action of many kinases involved in cellular growth, apoptosis, epithelial to mesenchymal transition, motility, invasion and metastasis. Previously, we described an inverse association between RKIP and signal transducers and activators of transcription 3 (STAT3) expression in gastric adenocarcinoma patients. In this study, we elucidated the mechanism by which RKIP regulates STAT3 activity in breast and prostate cancer cell lines.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) contribute to the recovery of tissue injury, providing a paracrine support. Cell-derived extracellular vesicles (EVs), carrying membrane and cytoplasmatic constituents of the cell of origin, have been described as a fundamental mechanism of intercellular communication. We previously demonstrated that EVs derived from human MSCs accelerated recovery following acute kidney injury (AKI) in vivo.
View Article and Find Full Text PDFRaf Kinase inhibitory protein (RKIP) is a well-established metastasis suppressor that is frequently downregulated in aggressive cancers. The impact of RKIP and its phosphorylated form on disease-free survival (DFS) and other clinicopathological parameters in breast cancer is yet to be discovered. To this end, we examined RKIP expression in 3 independent breast cancer cohorts.
View Article and Find Full Text PDFBackground: Extracellular vesicle (EV) trafficking is a fundamental cellular process that occurs in cells and is required for different aspects of pathophysiology. EV trafficking leads to changes in cellular function including apoptosis, angiogenesis and proliferation required for increased tumor formation.
Results: We report several phenotypic changes mediated by EVs isolated from non-malignant and malignant prostate cells as well as patient biopsied prostate tumor samples.
Background: A major obstacle in treating colorectal cancer (CRC) is the acquired resistance to chemotherapeutic agents. An important protein in the regulation of cancer cell death and clinical outcome is Raf kinase inhibitor protein (RKIP). In contrast, activated signal transducer and activator of transcription 3 (STAT3) is a protein that promotes tumor cell survival by inhibiting apoptosis and has an important role in cancer progression in many of cancer types.
View Article and Find Full Text PDFMelanoma differentiation associated gene-9 (MDA-9), also known as syntenin, functions as a positive regulator of melanoma progression and metastasis. In contrast, the Raf kinase inhibitor, RKIP, a negative modulator of RAF-stimulated MEKK activation, is strongly downregulated in metastatic melanoma cells. In this study, we explored a hypothesized inverse relationship between MDA-9 and RKIP in melanoma.
View Article and Find Full Text PDFHelicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that infects more than half of the world's population and is a major cause of gastric adenocarcinoma. The mechanisms that link H.
View Article and Find Full Text PDFBackground: Raf-1 kinase inhibitor protein (RKIP) has been reported to negatively regulate signal kinases of major survival pathways. RKIP activity is modulated in part by phosphorylation on Serine 153 by protein kinase C, which leads to dissociation of RKIP from Raf-1. RKIP expression is low in many human cancers and represents an indicator of poor prognosis and/or induction of metastasis.
View Article and Find Full Text PDFPurpose: Transfer of genetic material from cancer cells to normal cells occurs via microvesicles. Cell specific phenotypes can be induced in normal cells by the transfer of material in microvesicles, leading to genetic changes. We report the identification and expression of prostate specific genes in normal human marrow cells co-cultured with human prostate cancer cells.
View Article and Find Full Text PDFPurpose: Raf Kinase Inhibitory Protein (RKIP) plays a pivotal role in cancer by regulating apoptosis induced by chemotherapeutic agents, or immune-mediated stimuli and is a metastasis suppressor protein. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is frequently activated in gastric adenocarcinomas, thereby promoting tumor growth. We examined the expression patterns of RKIP and STAT3 with regard to human gastric cancer, predicting that elevated RKIP status may favor clinical outcome.
View Article and Find Full Text PDFThe treatment of primary tumors results in an initial response to approved conventional therapeutics. However, recurrences and malignancies develop as a result of tumors' acquisition of anti-apoptotic mechanisms of resistance. Hence, there is an urgent need of novel therapeutics that can reverse resistance.
View Article and Find Full Text PDFRaf-1 kinase inhibitor protein (RKIP) has been implicated in the regulation of cell survival pathways and metastases, and is poorly expressed in tumors. We have reported that the NF-kappaB pathway regulates tumor resistance to apoptosis by the TNF-alpha family via inactivation of the transcription repressor Yin Yang 1 (YY1). We hypothesized that RKIP overexpression may regulate tumor sensitivity to death ligands via inhibition of YY1 and up-regulation of death receptors (DRs).
View Article and Find Full Text PDFStat3 and its isoforms belong to a family of cytoplasmic transcription factors that affect the synthesis of various proteins. Caspases are cysteinyl-aspartate proteases that function under apoptotic and non-apoptotic conditions. We now report that, in addition to transcriptional splicing, Stat3 fragmentation can be mediated by caspases.
View Article and Find Full Text PDFUpon cytokine treatment, members of the signal transducers and activators of transcription (STAT) family of proteins are phosphorylated on tyrosine and serine sites within the carboxyl-terminal region in cells. We show that in response to cytokine treatment, Stat3 is also acetylated on a single lysine residue, Lys685. Histone acetyltransferase p300-mediated Stat3 acetylation on Lys685 was reversible by type I histone deacetylase (HDAC).
View Article and Find Full Text PDFRituximab (Rituxan, IDEC-C2B8) has been shown to sensitize non-Hodgkin's lymphoma (NHL) cell lines to chemotherapeutic drug-induced apoptosis. Rituximab treatment of Bcl-2-deficient Ramos cells and Bcl-2-expressing Daudi cells selectively decreases Bcl-(xL) expression and sensitizes the cells to paclitaxel-induced apoptosis. This study delineates the signaling pathway involved in rituximab-mediated Bcl-(xL) down-regulation in Ramos and Daudi NHL B cells.
View Article and Find Full Text PDFThe acquisition of resistance to conventional therapies such as radiation and chemotherapeutic drugs remains the major obstacle in the successful treatment of cancer patients. Tumor cells acquire resistance to apoptotic stimuli and it has been demonstrated that conventional therapies exert their cytotoxic activities primarily by inducing apoptosis in the cells. Resistance to radiation and chemotherapeutic drugs has led to the development of immunotherapy and gene therapy approaches with the intent of overcoming resistance to drugs and radiation as well as enhancing the specificity to eliminate tumor cells.
View Article and Find Full Text PDFA promising family of anticancer agents, the camptothecins, is noted for their ability to induce apoptosis specifically in malignant cells. However, a major obstacle for successful cancer treatment by these and other chemotherapeutic agents is the intrinsic or acquired resistance to drug treatment. Resistance to 9NC6, a camptothecin derivative, has been modeled in vitro using a human prostate cancer cell line.
View Article and Find Full Text PDF