Publications by authors named "Devasena Thiagarajan"

Animals form sensory associations and store them as memories to guide behavioral decisions. Although unimodal learning has been studied extensively in insects, it is important to explore sensory cues in combination because most behaviors require multimodal inputs. In our study, we optimized the T-maze to employ both visual and olfactory cues in a classical aversive learning paradigm in .

View Article and Find Full Text PDF

The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects.

View Article and Find Full Text PDF

Ataxin-2 (Atx2) is a translational control molecule mutated in spinocerebellar ataxia type II and amyotrophic lateral sclerosis. While intrinsically disordered domains (IDRs) of Atx2 facilitate mRNP condensation into granules, how IDRs work with structured domains to enable positive and negative regulation of target mRNAs remains unclear. Using the Targets of RNA-Binding Proteins Identified by Editing technology, we identified an extensive data set of Atx2-target mRNAs in the brain and S2 cells.

View Article and Find Full Text PDF

Human Ataxin-2 is implicated in the cause and progression of amyotrophic lateral sclerosis (ALS) and type 2 spinocerebellar ataxia (SCA-2). In Drosophila, a conserved atx2 gene is essential for animal survival as well as for normal RNP-granule assembly, translational control, and long-term habituation. Like its human homolog, Drosophila Ataxin-2 (Atx2) contains polyQ repeats and additional intrinsically disordered regions (IDRs).

View Article and Find Full Text PDF

Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood.

View Article and Find Full Text PDF