The endoplasmic reticulum (ER) regulates protein folding and maintains proteostasis in cells. We observed that the ER transcriptome is impaired during chronic reductive stress (RS) in cardiomyocytes. Here, we hypothesized that a prolonged moderate treadmill exercise mitigates the RS-induced ER dysfunction and cardiac remodeling in cardiac-specific constitutively active Nrf2 mice (CaNrf2-TG).
View Article and Find Full Text PDFParasympathetic dysfunction after chronic myocardial infarction (MI) is known to predispose ventricular tachyarrhythmias (ventricular tachycardia/ventricular fibrillation [VT/VF]). VT/VF after MI is more common in males than females. The mechanisms underlying the decreased vagal tone and the associated sex difference in the occurrence of VT/VF after MI remain elusive.
View Article and Find Full Text PDFSignificant cardiorespiratory coordination is required to maintain physiological function in health and disease. Sensory neuronal "cross-talk" between the heart and the lungs is required for synchronous regulation of normal cardiopulmonary function and is most likely mediated by the convergence of sensory neural pathways present in the autonomic ganglia. Using neurotracer approaches with appropriate negative control experiments in a mouse model, presence of cardiorespiratory neurons in the vagal (nodose) ganglia are demonstrated.
View Article and Find Full Text PDFThe recent global pandemic due to COVID-19 is caused by a type of coronavirus, SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Despite rigorous efforts worldwide to control the spread and human to human transmission of this virus, incidence and death due to COVID-19 continue to rise. Several drugs have been tested for treatment of COVID-19, including hydroxychloroquine.
View Article and Find Full Text PDFRedox homeostasis regulates key cellular signaling in both physiology and pathology. While perturbations result in shifting the redox homeostasis towards oxidative stress are well documented, the influence of reductive stress (RS) in neurodegenerative diseases and its mechanisms are unknown. Here, we postulate that a redox shift towards the reductive arm (through the activation of Nrf2 signaling) will damage neurons and impair neurogenesis.
View Article and Find Full Text PDFParaoxonase 1(PON1) is an HDL-associated protein, which metabolizes inflammatory, oxidized lipids associated with atherosclerotic plaque development. Because oxidized lipid mediators have also been implicated in the pathogenesis of rheumatoid arthritis (RA), we evaluated the role of PON1 in murine inflammatory arthritis. K/BxN serum transfer (STIA) or collagen antibody transfer (CAIA) was used for arthritis induction in B6 mice homozygous for the PON1 human transgene [PON1Tg], PON1 knock-out mice [PON1KO], and wild type littermate control mice [WT].
View Article and Find Full Text PDFAlthough exercise derived activation of Nrf2 signaling augments myocardial antioxidant signaling, the molecular mechanisms underlying the benefits of moderate exercise training (MET) in the heart remain elusive. Here we hypothesized that exercise training stabilizes Nrf2-dependent antioxidant signaling, which then protects the myocardium from isoproterenol-induced damage. The present study assessed the effects of 6 weeks of MET on the Nrf2/antioxidant function, glutathione redox state, and injury in the myocardium of C57/BL6J mice that received isoproterenol (ISO; 50 mg/kg/day for 7 days).
View Article and Find Full Text PDFNuclear factor (erythroid-derived 2)-like 2 (NFE2L2/Nrf2) is an inducible transcription factor that is essential for maintenance of redox signaling in response to stress. This suggests that if Nrf2 expression response could be enhanced for a defined physiological pro-oxidant stress then it would be protective. This has important implications for the therapeutic manipulation of the Keap1/Nrf2 signaling pathway which is now gaining a lot of attention.
View Article and Find Full Text PDFCytotoxic NK/CD8 T cells interact with MHC-I ligands on tumor cells through either activating or inhibiting receptors. One of the inhibitory receptors is CD94/NKG2A. The NK/CD8 T cell cytotoxic capability is lost when tumor-associated human leukocyte antigen, HLA-E, binds the CD94/NKG2A receptor, resulting in tumor progression and reduced survival.
View Article and Find Full Text PDFObjective: To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI).
Approach: IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) ± LY294002 (a potent PI3K inhibitor).
Intrauterine growth restriction (IUGR) leads to adult obesity, cardiovascular disease, and non-alcoholic fatty liver disease/steatohepatitis. Animal models have shown that combined intrauterine and early postnatal calorie restriction (IPCR) ameliorates these sequelae in adult life. The mechanism by which IPCR protects against adult onset disease is not understood.
View Article and Find Full Text PDFThe prevalence of kidney stones and cardiovascular diseases (CVDs) are increasing throughout the world. Both diseases are chronic and characterized by accumulation of oxidized proteins and lipids in the renal tissue and arterial wall, respectively. Emerging studies have revealed a positive association between nephrolithiasis and CVDs.
View Article and Find Full Text PDFOvarian cancer (OC) is most lethal malignancy among all gynecological cancer. Large bodies of evidences suggest that mitochondrial-derived ROS play a critical role in the development and progression of OC. Paraoxonase 2 (PON2) is a membrane-associated lactonase with anti-oxidant properties.
View Article and Find Full Text PDFBackground: Anomalies in myocardial structure involving myocyte growth, hypertrophy, differentiation, apoptosis, necrosis etc. affects its function and render cardiac tissue more vulnerable to the development of heart failure. Although oxidative stress has a well-established role in cardiac remodeling and dysfunction, the mechanisms linking redox state to atrial cardiomyocyte hypertrophic changes are poorly understood.
View Article and Find Full Text PDFWe report the engineering and characterization of paraoxonase-3 knockout mice (Pon3KO). The mice were generally healthy but exhibited quantitative alterations in bile acid metabolism and a 37% increased body weight compared to the wild-type mice on a high fat diet. PON3 was enriched in the mitochondria-associated membrane fraction of hepatocytes.
View Article and Find Full Text PDFAdv Exp Med Biol
November 2014
The paraoxonase (PON) gene family consists of three members, PON1, PON2 and PON3. All PON proteins possess antioxidant properties and lipo-lactonase activities, and are implicated in the pathogenesis of several inflammatory diseases including atherosclerosis, Alzheimer's, Parkinson's, diabetes and cancer. Despite the role of PON proteins in critical cellular functions and associated pathologies, the physiological substrates and molecular mechanisms by which PON proteins function as anti-inflammatory proteins remain largely unknown.
View Article and Find Full Text PDFOxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO).
View Article and Find Full Text PDFPolymorphonuclear neutrophils (PMN) play a key role in host innate immune responses by migrating to the sites of inflammation. Furthermore, PMN recruitment also plays a significant role in the pathophysiology of a plethora of inflammatory disorders such as chronic obstructive pulmonary disease (COPD), gram negative sepsis, inflammatory bowel disease (IBD), lung injury, and arthritis. Of note, chemokine-dependent signalling is implicated in the amplification of immune responses by virtue of its role in PMN chemotaxis in most of the inflammatory diseases.
View Article and Find Full Text PDFN-(3-oxododecanoyl)-l-homoserine lactone (3OC(12)-HSL) is a quorum-sensing molecule produced by gram-negative microbial pathogens such as Pseudomonas aeruginosa (PAO1). 3OC(12)-HSL is involved in the regulation of bacterial virulence factors and also alters the function of the host immune cells. Others and we have previously shown that paraoxonase 2 (PON2), a member of the paraoxonase gene family expressed in immune cells, hydrolyzes 3OC(12)-HSL.
View Article and Find Full Text PDFParaoxonase 2 deficiency (PON2-def) alters mitochondrial function and exacerbates the development of atherosclerosis in mice. PON2 overexpression protects against ER stress in cell culture. In this paper, we examined the role of PON2 in the unexplored link between ER stress and mitochondrial dysfunction and tested whether restoration of PON2 in macrophages is sufficient to reduce aggravated atherosclerosis in PON2-def/apoE(-/-) mice on a Western diet.
View Article and Find Full Text PDFCancer and atherosclerosis are major causes of death in western societies. Deregulated cell death is common to both diseases, with significant contribution of inflammatory processes and oxidative stress. These two form a vicious cycle and regulate cell death pathways in either direction.
View Article and Find Full Text PDFWe recently reported that apoA-I and apoA-I mimetic peptides prevent the development of flank tumors in immunocompetent C57BL/6J mice. To delineate the mechanism(s) of action of apoA-I mimetic peptides in tumor development, we examined the effect of D-4F (an apoA-I mimetic peptide) on the antioxidant status and on the gene expression and function of antioxidant enzymes in ID8 cells (a mouse epithelial ovarian cancer cell line) and in a mouse model. We demonstrate that D-4F treatment significantly reduces the viability and proliferation of ID8 cells, with a concomitant improvement of the antioxidant status of ID8 cells as measured by lipid peroxidation, protein carbonyl, superoxide anion, and hydrogen peroxide levels.
View Article and Find Full Text PDFParaoxanase-2 (PON2) activity was increased upon HIV-1 infection of the CD34+CD4+ hematopoietic cell line TF-1. Thymocytes derived from the human fetal conjoint thymus/liver hematopoietic organ of SCID-hu mice also exhibited an increase in PON2 activity. Additionally, a remarkable increase of PON2 mRNA expression was also observed in both TF-1 and thymocytes following HIV-1 infection.
View Article and Find Full Text PDFIncreased production of reactive oxygen species (ROS) as a result of decreased activities of mitochondrial electron transport chain (ETC) complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. Our previous studies established that paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. The aim of the present study was to determine the mechanism by which PON2 modulates ROS production.
View Article and Find Full Text PDF