Lactic acid pre-treatment was examined to enhance the antimicrobial action of electron (e-) beam irradiation of beef trim. Meat samples were inoculated with Escherichia coli O157:H7, non-O157 VTEC E. coli or Salmonella cocktails and treated with 5% lactic acid at 55 °C.
View Article and Find Full Text PDFThis study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤1.
View Article and Find Full Text PDFVerotoxigenic Escherichia coli (VTEC) and Salmonella are major foodborne pathogens, but very little information is available on the radiation resistance of a sufficiently diverse group of these pathogens. The objective of this study was to evaluate the sensitivity of E. coli O157:H7, non-O157 VTEC, and Salmonella to a low-dose ionizing radiation treatment.
View Article and Find Full Text PDFThe objectives of this study were to determine the effects of a low-dose (≤1 kGy), low-penetration electron beam on the sensory qualities of (1) raw muscle pieces of beef and (2) cooked ground beef patties. Outside flat, inside round, brisket and sirloin muscle pieces were used as models to demonstrate the effect of irradiation on raw beef odor and color, as evaluated by a trained panel. Ground beef patties were also evaluated by a trained panel for tenderness, juiciness, beef flavor, and aroma at 10%, 20%, and 30% levels of fat, containing 0% (control), 10%, 20%, 50%, and 100% irradiated meat.
View Article and Find Full Text PDF