Unlabelled: Mice that lack the genes for IL-27, or the IL-27 receptor, and infected with develop T cell-mediated pathology. Here, studies were performed to determine the impact of endogenous IL-27 on the immune response to in wild-type (WT) mice. Analysis of infected mice revealed the early production of IL-27p28 by a subset of Ly6C, inflammatory monocytes, and sustained IL-27p28 production at sites of acute and chronic infection.
View Article and Find Full Text PDFInhibitory receptors (IR) are a diverse group of cell surface molecules that modulate T cell activation, but there are gaps in our knowledge of the cell-extrinsic factors that regulate their expression. The present study found that in vivo overexpression of IL-27 in mice led to increased T cell expression of PD-L1, LAG-3, TIGIT, and TIM-3. In vitro, TCR stimulation alone promoted expression of multiple IRs, whereas IL-27 alone induced expression of PD-L1.
View Article and Find Full Text PDFBackground: Sirtuin 1 (SIRT1), a class III histone deacetylase, has been identified as a candidate molecule affecting the epigenetic mechanisms of cardiovascular disease (CVD). Previous studies have shown that some SIRT1 single-nucleotide polymorphisms (SNPs) are associated with body mass index, diabetes, blood pressure, cholesterol metabolism and coronary artery calcification. We investigated two A>G SIRT1 SNPs, rs1467568 and rs7895833, in young South African (SA) Indians with coronary artery disease (CAD) and compared them to Indian and black controls.
View Article and Find Full Text PDFSmall-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling.
View Article and Find Full Text PDFT-helper (Th) 17 cells are a pro-inflammatory subset of CD4(+) effector T-cells critical in mucosal immunity. Imbalances in Th17 cell proportion have been implicated in the pathogenesis of several diseases; however, this has not been adequately explored in tuberculosis (TB) and human immunodeficiency virus (HIV) co-infection. Since Th17 cells are predominantly mucosally associated, we assessed Th17 proportion and associated microenvironment in pleural effusions from patients co-infected with TB/HIV.
View Article and Find Full Text PDFBackground And Aim: Tumor protein p53 (p53), classically referred to as a tumor suppressor gene, is involved in cell cycle regulation and may be related to atherosclerosis by affecting smooth muscle cell proliferation, a feature of atherogenesis. A polymorphism at codon 72 (rs1042522) results in functional variability and hence plays a role in the pathophysiology of coronary artery disease (CAD). This polymorphism has been well established for its role in cancer and has only recently been investigated in CAD.
View Article and Find Full Text PDFMycobacterium tuberculosis (MTB) is one of the most successful pathogens in human history and remains a global health challenge. MTB has evolved a plethora of strategies to evade the immune response sufficiently to survive within the macrophage in a bacterial-immunological equilibrium, yet causes sufficient immunopathology to facilitate its transmission. This review highlights MTB as the driver of disease pathogenesis and presents evidence of the mechanisms by which MTB manipulates the protective immune response into a pathological productive infection.
View Article and Find Full Text PDFType 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration.
View Article and Find Full Text PDFMethylenetetrahydrofolate reductase (MTHFR) reduces 5',10'-methylenetetrahydrofolate to 5'-methyltetrahydrofolate, and is involved in remethylation of homocysteine to methionine, two important reactions involved in folate metabolism and methylation pathways. The common MTHFR C677T single nucleotide polymorphism (SNP) (rs1801133) has been associated with raised levels of homocysteine, a well known risk factor for coronary artery disease (CAD). CAD is a major cause of mortality worldwide.
View Article and Find Full Text PDFBackground: Hyperglycemia exacerbates the production of mitochondrial reactive oxygen species and this contributes to a variety of pathological conditions. Sirtuin 3 (SIRT3) has been shown to play a role in decreasing oxidative stress and improving disease outcomes by regulating antioxidant defense. Our understanding of molecular events during oxidative stress under chronic hyperglycemia in the liver is limited.
View Article and Find Full Text PDFAtorvastatin is used to control cholesterol and lipid levels in hyperlipidaemic and hypercholesterolaemic patients. Myopathy and hepatotoxicity, however, have been reported as side effects in a small percentage of statin users. This study aimed to investigate the cytotoxicity and the effect of atorvastatin on microRNA expression in HepG2 cells.
View Article and Find Full Text PDFFumonisin B1 (FB1) is a mycotoxin produced by Fusarium sp., a common contaminant of maize. FB1 inhibits sphingolipid biosynthesis, alters sphingosine/sphinganine ratios and modifies cell survival and cell death processes at varying propensities at both species- and tissue-specific level.
View Article and Find Full Text PDFFumonisin B₁ (FB₁), a common mycotoxin contaminant of maize, is known to inhibit sphingolipid biosynthesis and has been implicated in hepatocellular carcinoma promoting activity in humans and animals. MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression via translational repression. Human cytochrome P450 (CYP1B1) is highly expressed in oestrogen target tissues and catalyzes the metabolic activation of many procarcinogens.
View Article and Find Full Text PDFFumonisin B1 (FB1), a common mycotoxin contaminant of maize, is known to inhibit sphingolipid biosynthesis and has been implicated in cancer promoting activity in animals and humans. FB1 disrupts DNA methylation and chromatin modifications in human hepatoma (HepG2) cells. We investigated the effect of FB1 on enzymes, DNA methyltransferases and demethylases, involved in chromatin maintenance and gross changes in structural integrity of DNA in HepG2 cells.
View Article and Find Full Text PDFModulation of nuclear factor KappaB (NF-κB) activation may play a role in regulating inflammatory conditions associated with coronary artery disease (CAD). MicroRNA-146a (miR-146a) primarily targets interleukin-1 receptor-associated kinase 1 (IRAK-1) and tumour necrosis factor receptor associated factor 6 (TRAF-6), which results in inhibition of NF-κB via the TLR pathway. This study investigated the influence of the miR-146a GC rs2910164 on miR-146a expression in young South African Indians with CAD.
View Article and Find Full Text PDFBackground: Uncoupling proteins (UCPs) 2 and 3 play an important role in the regulation of oxidative stress which contributes to chronic inflammation. Promoter polymorphisms of these genes have been linked to chronic diseases including heart disease and type II diabetes mellitus in several populations. This is the first investigation of the UCP2 -866G/A rs659366 and UCP3 -55C/T rs1800849 polymorphisms in young South African (SA) Indians with coronary artery disease (CAD).
View Article and Find Full Text PDFBackground: Interleukin-6 (IL-6) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases such as coronary artery disease (CAD). The -174 IL-6 G/C promoter polymorphism influences mRNA levels and protein expression and is implicated in CAD. The Indian population in South Africa, unlike the black community, has a high prevalence of premature CAD.
View Article and Find Full Text PDFBackground: Glutathione S-transferases (GSTs) detoxify environmental agents which influence the onset and progression of disease. Dysfunctional detoxification enzymes are responsible for prolonged exposure to reactive molecules and can contribute to endothelial damage, an underlying factor in coronary artery disease (CAD).
Objectives: We aimed to assess 2 common polymorphic variant isoforms in GSTM1 and GSTP1 of GST in young CAD patients.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease, which causes synovial damage. Persistence of lymphocyte infiltrates in the rheumatoid synovium has been attributed to abnormal apoptosis. While not comprehensively investigated, perturbations in peripheral blood lymphocyte (PBL) apoptosis may also be involved in perpetuation of autoimmune processes in RA.
View Article and Find Full Text PDFThe p53 tumor-suppressor protein plays an integral role in apoptosis. Perturbations in peripheral lymphocyte (PL) apoptosis may be associated with rheumatoid arthritis (RA). Polymorphisms at codon 72 of p53 (arginine (Arg72) to proline transition) confers differences in mitochondrial translocation and apoptosis inducing capabilities of p53 in vitro.
View Article and Find Full Text PDF