Publications by authors named "Devanjan Sikder"

Background: B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have generated responses in patients with advanced myeloma, but relapses are common. G protein-coupled receptor, class C, group 5, member D (GPRC5D) has been identified as an immunotherapeutic target in multiple myeloma. Preclinical studies have shown the efficacy of GPRC5D-targeted CAR T cells, including activity in a BCMA antigen escape model.

View Article and Find Full Text PDF

With the US Food and Drug Administration (FDA) approval of four CD19- and one BCMA-targeted chimeric antigen receptor (CAR) therapy for B cell malignancies, CAR T cell therapy has finally reached the status of a medicinal product. The successful manufacturing of autologous CAR T cell products is a key requirement for this promising treatment modality. By analyzing the composition of 214 apheresis products from 210 subjects across eight disease indications, we found that high CD14 cell content poses a challenge for manufacturing CAR T cells, especially in patients with non-Hodgkin's lymphoma and multiple myeloma caused by the non-specific phagocytosis of the magnetic beads used to activate CD3 T cells.

View Article and Find Full Text PDF

Malignant pleural diseases, comprising metastatic lung and breast cancers and malignant pleural mesothelioma (MPM), are aggressive solid tumors with poor therapeutic response. We developed and conducted a first-in-human, phase I study of regionally delivered, autologous, mesothelin-targeted chimeric antigen receptor (CAR) T-cell therapy. Intrapleural administration of 0.

View Article and Find Full Text PDF

The aging process causes an increase in percent body fat, but the mechanism remains unclear. In the present study we examined the impact of aging on brown adipose tissue (BAT) thermogenic activity as potential cause for the increase in adiposity. We show that aging is associated with interscapular BAT morphologic abnormalities and thermogenic dysfunction.

View Article and Find Full Text PDF

Nutrition plays a dominant role in human adaptation. Biological traits conferring these adaptations are of considerable significance. Within an obesogenic environment, there is considerable variation among individuals in their susceptibility to weight gain.

View Article and Find Full Text PDF

Orexins are a pair of hypothalamic neuropeptides that were discovered in the late 1990s and named initially for their ability to promote feeding. Subsequent studies have revealed the importance of orexins to a variety of physiological functions, including brown fat thermogenesis, sleep/wake cycles, physical activity, and cognition. We aim to elucidate the various roles of orexins and discuss how these multiple functions are interlinked.

View Article and Find Full Text PDF

Orexin A (OX) is a small excitatory neuropeptide hormone that stimulates feeding, wakefulness and energy expenditure via a pair of G-coupled protein receptors, namely orexin receptor-1 (OXR1) and orexin receptor-2 (OXR2). OX-deficient mice are sensitive to obesity despite being hypophagic. The obesogenic effect of OX-deletion is due to brown adipose tissue (BAT) dysfunction, a defect that originates during fetal growth.

View Article and Find Full Text PDF

Orexin (OX) neuropeptides stimulate feeding and arousal. Deficiency of orexin is implicated in narcolepsy, a disease associated with obesity, paradoxically in the face of reduced food intake. Here, we show that obesity in orexin-null mice is associated with impaired brown adipose tissue (BAT) thermogenesis.

View Article and Find Full Text PDF

Rationale: Despite overwhelming evidence of the importance of circadian rhythms in cardiovascular health and disease, little is known regarding the circadian regulation of intracellular signaling pathways controlling cardiac function and remodeling.

Objective: To assess circadian changes in processes dependent on the protein phosphatase calcineurin, relative to changes in phosphorylation of cardiac proteins, in normal, hypertrophic, and failing hearts.

Methods And Results: We found evidence of large circadian oscillations in calcineurin-dependent activities in the left ventricle of healthy C57BL/6 mice.

View Article and Find Full Text PDF

Although it is a widely studied psychiatric syndrome, major depressive disorder remains a poorly understood illness, especially with regard to the disconnect between treatment initiation and the delayed onset of clinical improvement. We have recently validated chronic social defeat stress in mice as a model in which a depression-like phenotype is reversed by chronic, but not acute, antidepressant administration. Here, we use chromatin immunoprecipitation (ChIP)-chip assays--ChIP followed by genome wide promoter array analyses--to study the effects of chronic defeat stress on chromatin regulation in the mouse nucleus accumbens (NAc), a key brain reward region implicated in depression.

View Article and Find Full Text PDF

Changes in gene expression contribute to the long-lasting regulation of the brain's reward circuitry seen in drug addiction; however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings reveal several interesting principles of gene regulation by cocaine and of the role of DeltaFosB and CREB, two prominent cocaine-induced transcription factors, in this brain region.

View Article and Find Full Text PDF

Cardiac hypertrophy develops in response to a variety of cardiovascular stresses and results in activation of numerous signaling cascades and proteins. In the present study, we demonstrate that cytoglobin is a stress-responsive hemoprotein in the hypoxia-induced hypertrophic myocardium and it is transcriptionally regulated by calcineurin-dependent transcription factors. The cytoglobin transcript level is abundantly expressed in the adult heart and in response to hypoxia cytoglobin expression is markedly up-regulated within the hypoxia-induced hypertrophic heart.

View Article and Find Full Text PDF

Recent analysis of a Gal4 mutant (Gap71) carrying three point mutations (S22D, K23Q and K25F) in its DNA-binding domain (DBD), has demonstrated that it cannot occupy GAL promoters efficiently in cells and that it is not mono-ubiquitylated, suggesting a functional link between this modification and stable DNA binding in cells. The mechanistic underpinning of this phenotype is that this protein is hypersensitive to a newly discovered activity of the proteasomal ATPases--their ability to actively dissociate transcription factor-DNA complexes after direct interaction with the activation domain. In this paper, we examine the roles of each of the three point mutations contained in Gap71 individually.

View Article and Find Full Text PDF

Repeated exposure to cocaine causes sensitized behavioral responses and increased dendritic spines on medium spiny neurons of the nucleus accumbens (NAc). We find that cocaine regulates myocyte enhancer factor 2 (MEF2) transcription factors to control these two processes in vivo. Cocaine suppresses striatal MEF2 activity in part through a mechanism involving cAMP, the regulator of calmodulin signaling (RCS), and calcineurin.

View Article and Find Full Text PDF

Orexin A and Orexin B (also known as hypocretins) are neuropeptides that bind two related G-coupled protein receptors (OXR1 and OXR2) and thus induce wakefulness, food consumption, and locomotion. Conversely, deletion of the orexin gene in mice produces a condition similar to canine and human narcolepsy. Despite the central importance of the orexin system in regulating wakefulness and feeding behavior, little is known about the downstream signaling mechanisms that achieve these effects.

View Article and Find Full Text PDF

Synthetic molecules capable of activating the expression of specific genes are of great interest as tools for biological research and, potentially, as a novel class of pharmaceutical agents. It has been demonstrated previously that such synthetic transcription factor mimics (STFMs) can be constructed by connecting a sequence-specific DNA-binding module to a molecule capable of binding to the transcriptional machinery via a suitable linker. These chimeras mimic the two basic properties of native transcription factors, which are able to recognize a promoter sequence specifically and to recruit the transcriptional machinery to that promoter.

View Article and Find Full Text PDF

Although HSF1 plays an important role in the cellular response to proteotoxic stressors, little is known about the structure and function of the human HSF1 signaling network under both stressed and unstressed conditions. In this study, we used a combination of chromatin immunoprecipitation microarray analysis and time course gene expression microarray analysis with and without siRNA-mediated inhibition of HSF1 to comprehensively identify genes regulated directly and indirectly by HSF1. The correlation between promoter binding and gene expression was not significant for all genes bound by HSF1, suggesting that HSF1 binding per se is not sufficient for expression.

View Article and Find Full Text PDF

Recent studies have shown that the intersection between transcription and proteins involved in the ubiquitin-proteasome pathway encompasses both proteolytic and nonproteolytic functions. Examples of the latter type include evidence that monoubiquitylation of some transcriptional activators stimulates their activity. In addition, the proteasomal ATPases are recruited to many active promoters through binding to activators and play an important, nonproteolytic role in promoter escape and elongation.

View Article and Find Full Text PDF

Transcriptional activators need to be modulated and eventually switched off after the initial event that triggers their activation. Here, we discuss how ubiquitination of activators and their proteasome-mediated turnover are crucial steps in this process.

View Article and Find Full Text PDF

It has recently become clear that various aspects of nucleic acid metabolism and the ubiquitin-proteasome pathway intersect in several direct and important ways. To begin to assess the scope of some of these activities in the yeast Saccharomyces cerevisiae, we assessed the physical and functional association of proteasomal proteins from both the 20 S core and 19 S regulatory particles with approximately 6400 yeast genes. Genome-wide chromatin immunoprecipitation analyses revealed that proteasome substituents are associated with the majority of yeast genes.

View Article and Find Full Text PDF

Sug1 and Sug2 are two of six ATPases in the 19S regulatory particle of the 26S proteasome. We have shown previously that these proteins play a non-proteolytic role in the transcription of the GAL genes in yeast. In this study, we probe the requirement for these factors in stress-induced transcription in yeast.

View Article and Find Full Text PDF

A central issue in the regulation of gene expression is the physical association of transcription factors with relevant promoter sequences. Recently, technological advances have allowed researchers to analyze these processes on a genomic scale. In particular, the combination of the chromatin immunoprecipitation (ChIP) technique with microarray analysis (the 'ChIP to chip' experiment) is providing a wealth of new and surprising data on transcription factor-chromatin interactions.

View Article and Find Full Text PDF

As a means of developing therapies that target the pathogenic T cells in multiple sclerosis (MS) without compromising the immune system or eliciting systemic side effects, we investigated the use of T-bet-specific antisense oligonucleotides and small interfering RNAs (siRNA) to silence T-bet expression in autoreactive encephalitogenic T cells and evaluated the biological consequences of this suppression in experimental autoimmune encephalomyelitis, a model for MS. The T-bet-specific AS oligonucleotide and siRNA suppressed T-bet expression, IFNgamma production, and STAT1 levels during antigen-specific T cell differentiation. In vitro suppression of T-bet during differentiation of myelin-specific T cells and in vivo administration of a T-bet-specific antisense oligonucleotide or siRNA inhibited disease.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1i9iuefebb9nhg9ffgoc2uli370e8hki): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once