Publications by authors named "Devanarayanan Siva Sankar"

The ULK1 kinase complex plays a crucial role in autophagosome biogenesis. To identify interactors or regulators of ULK1 complex assembly influencing autophagosome biogenesis, we performed an interaction proteomics screen. Employing both affinity purification and proximity labeling of - and -terminal tagged fusion proteins coupled to quantitative mass spectrometry, we identified 317 high-confidence interactors or neighbors of the four ULK1 complex members, including both member-specific and common interactors.

View Article and Find Full Text PDF

Autophagy initiation is regulated by the ULK1 kinase complex. To gain insights into functions of the holo-complex, we generated a deep interactome by combining affinity purification- and proximity labeling-mass spectrometry of all four complex members: ULK1, ATG13, ATG101, and RB1CC1/FIP200. Under starvation conditions, the ULK1 complex interacts with several protein and lipid kinases and phosphatases, implying the formation of a signalosome.

View Article and Find Full Text PDF

Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus.

View Article and Find Full Text PDF

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers.

View Article and Find Full Text PDF

Autophagy disorders prominently affect the brain, entailing neurodevelopmental and neurodegenerative phenotypes in adolescence or aging, respectively. Synaptic and behavioral deficits are largely recapitulated in mouse models with ablation of autophagy genes in brain cells. Yet, the nature and temporal dynamics of brain autophagic substrates remain insufficiently characterized.

View Article and Find Full Text PDF

Collagen has been postulated to be the most abundant protein in our body, making up one-third of the total protein content in mammals. However, a direct assessment of the total collagen levels of an entire mammal to confirm this estimate is missing. Here we measured hydroxyproline levels as a proxy for collagen content together with total protein levels of entire mice or of individual tissues.

View Article and Find Full Text PDF

Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins.

View Article and Find Full Text PDF

Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor.

View Article and Find Full Text PDF

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations.

View Article and Find Full Text PDF

ULK1 kinase is the gatekeeper of canonical macroautophagy (hereafter referred to as autophagy) phosphorylating an array of substrates critical for autophagosome biogenesis. To uncover if ULK1 has broader functions also regulating subsequent steps of autophagosome turnover, i.e.

View Article and Find Full Text PDF

The evolutionarily conserved ULK1 kinase complex acts as gatekeeper of canonical autophagy and regulates induction of autophagosome biogenesis. To better understand control of ULK1 and analyze whether ULK1 has broader functions that are also linked to the later steps of autophagy, we perform comprehensive phosphoproteomic analyses. Combining in vivo with in vitro data, we identify numerous direct ULK1 target sites within autophagy-relevant proteins that are critical for autophagosome maturation and turnover.

View Article and Find Full Text PDF

Autophagy summarizes evolutionarily conserved, intracellular degradation processes targeting cytoplasmic material for lysosomal degradation. These encompass constitutive processes as well as stress responses, which are often found dysregulated in diseases. Autophagy pathways help in the clearance of damaged organelles, protein aggregates and macromolecules, mediating their recycling and maintaining cellular homeostasis.

View Article and Find Full Text PDF

Remyelination of the peripheral and central nervous systems (PNS and CNS, respectively) is a prerequisite for functional recovery after lesion. However, this process is not always optimal and becomes inefficient in the course of multiple sclerosis. Here we show that, when acetylated, eukaryotic elongation factor 1A1 (eEF1A1) negatively regulates PNS and CNS remyelination.

View Article and Find Full Text PDF

Aim: We aimed at assessing cardiovascular risk of first degree relatives of diabetes (FDRD).

Methods: A cross sectional study involving 90 apparently healthy normoglycemic volunteers aged between 15 and 50 years (45 FDRD and 45 FDRs of non-diabetics). We measured anthropometric parameters, baroreflex sensitivity, heart rate variability, cardiac autonomic function tests, and aerobic capacity, fasting blood glucose and insulin, lipid profile, inflammatory markers, nitric oxide and oxidative stress markers.

View Article and Find Full Text PDF

Chloroquine (CQ) has been used for decades as the primary chemotherapeutic drug for the treatment of malaria. The emergence of drug resistance in Plasmodium falciparum has been considered to be because of the excessive use of antimalarial drugs worldwide. Moreover, the intense distribution and prevalence of chloroquine-resistant strains in endemic regions has aided the incidence of more complications to malaria treatment and control.

View Article and Find Full Text PDF