Publications by authors named "Devan Gomez"

Ghrelin receptor, also known as growth hormone secretagogue receptor (GHS-R1a), is coexpressed with its truncated isoform GHS-R1b, which does not bind ghrelin or signal, but oligomerizes with GHS-R1a, exerting a complex modulatory role that depends on its relative expression. D dopamine receptor (D1R) and D5R constitute the two D-like receptor subtypes. Previous studies showed that GHS-R1b also facilitates oligomerization of GHS-R1a with D1R, conferring GHS-R1a distinctive pharmacological properties.

View Article and Find Full Text PDF

Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years.

View Article and Find Full Text PDF

Synthetic cannabinoids were introduced into recreational drug culture in 2008 and quickly became one of the most commonly abused drugs in the United States. The neurobiological consequences resulting from synthetic cannabinoid repeated exposure remain poorly understood. It is possible that a blunted dopamine (DA) response may lead drug users to consume larger quantities to compensate for this form of neurochemical tolerance.

View Article and Find Full Text PDF

Endocannabinoids (eCBs) are neuromodulators that influence a wide range of neural systems and behaviors. In the current review, we describe our recent research showing how eCBs, particularly 2-arachidonoylglycerol (2-AG), concurrently shape mesolimbic dopamine (DA) release and associated behavior. We will restrict our discussion by emphasizing three distinct behaviors: reward seeking, interval timing, and active avoidance.

View Article and Find Full Text PDF

Despite evidence that morphine-related pathologies reflect adaptations in NAc glutamate signaling, substantial gaps in basic information remain. The current study examines the impact of non-contingent acute, repeated, and withdrawal-inducing morphine dosing regimens on glutamate transmission in D1- or D2-MSNs in the nucleus accumbens shell (NAcSh) and core (NAcC) sub-regions in hopes of identifying excitatory plasticity that may contribute to unique facets of opioid addiction-related behavior. Following an acute morphine injection (10 mg/kg), average miniature excitatory postsynaptic current (mEPSC) amplitude mediated by AMPA-type glutamate receptors was increased at D1-MSNs in the both the NAcShl and NAcC, whereas only the frequency of events was elevated at D2-MSNs in the NAcSh.

View Article and Find Full Text PDF

The mesolimbic dopamine system is strongly implicated in motivational processes. Currently accepted theories suggest that transient mesolimbic dopamine release events energize reward seeking and encode reward value. During the pursuit of reward, critical associations are formed between the reward and cues that predict its availability.

View Article and Find Full Text PDF

Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable.

View Article and Find Full Text PDF