Prostate cancer exhibits a lineage-specific dependence on androgen signaling. Castration resistance involves reactivation of androgen signaling or activation of alternative lineage programs to bypass androgen requirement. We describe an aberrant gastrointestinal-lineage transcriptome expressed in ∼5% of primary prostate cancer that is characterized by abbreviated response to androgen-deprivation therapy and in ∼30% of castration-resistant prostate cancer.
View Article and Find Full Text PDFFusion between TMPRSS2 and ERG, placing ERG under the control of the TMPRSS2 promoter, is the most frequent genetic alteration in prostate cancer, present in 40-50% of cases. The fusion event is an early, if not initiating, event in prostate cancer, implicating the TMPRSS2-positive prostate epithelial cell as the cancer cell of origin in fusion-positive prostate cancer. To introduce genetic alterations into Tmprss2-positive cells in mice in a temporal-specific manner, we generated a Tmprss2-CreERT2 knock-in mouse.
View Article and Find Full Text PDFActivation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ∼11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALK(ATI).
View Article and Find Full Text PDF