Publications by authors named "Dev Trivedi"

A novel hybrid melanocortin pharmacophore was designed based on the topographical similarities between the pharmacophores of Agouti related protein (AGRP) an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. When employed in two different 23-membered macrocyclic lactam peptide templates, the designed hybrid AGRP/MSH pharmacophore yielded non-competitive ligands with nanomolar range binding affinities. The topography-based pharmacophore hybridization strategy will prove useful in development of unique non-competitive melanocortin receptor modulators.

View Article and Find Full Text PDF

The major pharmacophore for the melanocortin 1, 3, 4 and 5 receptors is the sequence -His-Phe-Arg-Trp-. There is a need for potent, biologically stable, receptor selective ligands, both agonists and antagonists, for these receptors. In this report we briefly examine the structural and biophysical approaches we have taken to develop selective agonist and antagonist ligands that can cross (or not) the blood brain barrier.

View Article and Find Full Text PDF

A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the agouti-signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities.

View Article and Find Full Text PDF

A new series of melanotropin analogues with His or Arg residues in the core pharmacophores of MTII, SHU9119, and Ac-NDP-gamma-MSH-NH(2) replaced by Pro or trans-/cis-4-guanidinyl-Pro derivatives were designed and synthesized to introduce selectivity toward the human melanocortin 4 receptor (hMC4R). Analogues 1, 2, 3, 6, 7, 8 were found to be hMC4R selective. Second messenger studies have demonstrated that analogues 1 and 2 are insurmountable inhibitors of MTII agonist activity at the hMC4R.

View Article and Find Full Text PDF

Differentiation of the physiological role of the melanocortin receptor 5 MC5R from that of other melanocortin receptors will require development of high affinity and selective antagonists. To date, a few synthetic antagonist ligands active at hMC5 receptor are available, but most do not have appreciable selectivity. With the aim to gain more potent and selective antagonists for the MC5R ligands, we have designed, synthesized, and pharmacologically characterized a series of alkylthioaryl-bridged macrocyclic peptide analogues derived from MT-II and SHU9119.

View Article and Find Full Text PDF

A variety of dicarboxylic acid linkers introduced between the alpha-amino group of Pro(6) and the -amino group of Lys(10) of the cyclic lactam alpha-melanocyte-stimulating hormone (alpha-MSH)-derived Pro(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)-Lys(10)-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro(6) residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a beta-turn-like structure with the D-Phe/D-Nal(2') residues, which explains the high potency of the corresponding peptides.

View Article and Find Full Text PDF

We have identified compound 1 as a novel ligand for opioid and melanocortin (MC) receptors, which is derived from the overlapping of a well known structure for the delta opioid receptor, 2,6-dimethyltyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), and a small molecule for the MC receptor, Tic-DPhe(p-Cl)-piperidin-4-yl-N-phenyl-propionamide. Ligand 1 showed that there is an overlapping pharmacophore between opioid and MC receptors through the Tic residue. The ligand displayed high biological activities at the delta opioid receptor (Ki = 0.

View Article and Find Full Text PDF

Recently we have demonstrated that replacing His(6) by constrained amino acids(2) in the well-known antagonist SHU-9119 resulted in potent and selective antagonist ligands especially at the hMC3R and hMC5 receptors. With the aim to further explore position 6 in the sequence of SHU-9119 and MT-II, we have designed, synthesized, and pharmacologically characterized a series of peptide analogues of MT-II and SHU-9119 at the human melanocortin receptors subtypes MC3R, MC4R and MC5R. All these peptides were modified at position 6 with constrained amino acids which are commercially available.

View Article and Find Full Text PDF

Intensive efforts have been made to develop potent and selective ligands for certain human melanocortin receptors as possible treatments for obesity and sexual dysfunction due to the role of these receptors in feeding behavior, energy homeostasis, sexual function, etc. A number of novel alpha-MSH analogues were designed and synthesized primarily on the basis of our previous MTII NMR structure. In these peptide analogues, a disulfide or lactam bridge between residues at positions 5 and 8 was used as a conformational constraint to enhance the beta-turn spanning His6 and D-Phe7, while the pharmacophore group in Arg8 was mimicked via Nalpha-alkylation of residues 8 or 9 with the guanidinylbutyl group.

View Article and Find Full Text PDF

Melanocortin hormones and neurotransmitters regulate a vast array of physiologic processes by interacting with five G-protein-coupled melanocortin receptor types. In the present study, we have systematically studied the regulation of individual human melanocortin receptor wild subtypes using a synthetic rhodamine-labeled human melanotropin agonist and antagonist, arrestins fused to green fluorescent protein in conjunction with two-photon fluorescence laser scanning microscopy and confocal microscopy. Stimulation of the melanocortin receptors by its cognate agonist triggered rapid arrestin recruitment and receptor internalization for all four human melanocortin receptors examined.

View Article and Find Full Text PDF

A new bicyclic template has been developed for the synthesis of peptide mimetics. Straightforward synthetic steps, starting from amino acids, allow the facile construction of a wide range of analogs. This system was designed to target the melanocortin receptors (MCRs), with functional group selection based on a known pharmacophore and guidance from molecular modeling to rationally identify positional and stereochemical isomers likely to be active.

View Article and Find Full Text PDF

The effects of the linker arm rigidity and size on melanocortin receptor selectivity were explored in a series of compounds using cyclic lactam alpha-melanocyte-stimulating hormone template. A variety of dicarboxylic acid linkers introduced between the alpha-amino group of His(6) and the epsilon-amino group of Lys(10) lead to high-affinity, selective human melanocortin receptor-1 and -5 (hMC1R and hMC5R) antagonists. The incorporation of hydrophilic functions into the linker arm was found to be unfavorable for both binding potency and receptor selectivity.

View Article and Find Full Text PDF

A series of cyclic lactam analogues of gamma-MSH (H-Tyr1-Val2-Met3-Gly4-His5-Phe6-Arg7-Trp8-Asp9-Arg10-Phe11-Gly12-OH) with a bulky hydrophobic residue in the direct proximity to the pharmacophore (Xaa-D-Phe/D-Nal(2')-Arg-Trp) were designed and synthesized by solid-phase methods. A variety of amino acids with a broad range of hydrophobic/hydrophilic properties was introduced in position 5 to further explore their complementary role in receptor selectivity. Biological evaluation of these peptides revealed several analogues with potent hMC3R agonist and hMC3R/hMC5R antagonist activities, and good receptor selectivity.

View Article and Find Full Text PDF

Cyclic melanotropin peptides, designed with an aromatic amino acid substitution at the N-terminal position of the MT-II-type scaffold, were prepared by solid-phase peptide synthesis and evaluated for their ability to bind to and activate human melanocortin-1, -3, -4, and -5 receptors. The structure-activity studies of these MT-II analogues have identified a selective antagonist at the hMC4R (H-Phe-c[Asp-Pro-d-Nal(2')-Arg-Trp-Gly-Lys]-NH(2), pA(2)=8.7), a selective partial agonist at the hMC4R (H-d-Nal(2')-c[Asp-Pro-d-Phe-Arg-Trp-Gly-Lys]-NH(2), IC(50)=11nM, EC(50)=56nM), and a selective partial agonist at the hMC3R (H-d-Phe-c[Asp-Pro-d-Phe-Arg-Trp-Lys]-NH(2), IC(50)=3.

View Article and Find Full Text PDF

alpha-MSH and gamma-MSH are the natural endogenous hormones for the human melanocortin-1, 3, 4 and 5 receptors (hMC1R, hMC3R, hMC4R and hMC5R). These and more potent, stable and prolonged acting analogues such as NDP-alpha-MSH, MT-II and SHU-9119 are not very receptor selective. To develop potent and selective agonist and antagonist ligands for the melanocortin receptors we have used state-of-the-art biophysical studies, computational chemistry, and design of conformational and topographical constraints with novel templates.

View Article and Find Full Text PDF

To further evaluate elements that could contribute to the 3D topographical structure of gamma-MSH, we have systematically designed a group of linear gamma-MSH analogues and evaluated their biological activities: without a N-terminal acetyl, with and without a C-terminal amide, with Nle(3), with l- or d-Phe(6) or d-Nal(2')(6), and with d-Trp(8) or d-Nal(2')(8). It was found that changing the C-terminal acid in gamma-MSH to an amide and replacing Met with Nle leads to increased binding affinities at all four subtypes of melanocortin receptors (10-100 fold). Substitution of Trp(8) with d-Nal(2')(8) and Phe(6) with d-Phe(6) in gamma-MSH-NH(2) forms a selective antagonist for the hMC3R, whereas, substitution of Phe(6) with d-Nal(2')(6) and replacing Trp(8) with d-Trp(8) at gamma-MSH-NH(2) yields a selective partial agonist for the hMC1R.

View Article and Find Full Text PDF

Receptor-based signaling mechanisms are the primary source of cellular regulation. The superfamily of G protein-coupled receptors (GPCR) is the largest and most ubiquitous of the receptor-mediated processes. Desensitization of G-protein-coupled receptors is a fundamental mechanism regulating the cellular response to agonists.

View Article and Find Full Text PDF

The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets for drugs to treat obesity, sexual dysfunction, etc. Understanding the conformational basis of the receptor-ligand interactions is crucial to the design of potent and selective ligands for these receptors. The solution structures of the cyclic melanocortin agonists, partial agonist, and antagonists MTII, VJH085, SHU9119, MK5, and MK9 were determined by two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy at pH 4.

View Article and Find Full Text PDF

It has been shown by extensive studies that melanotropin bioactivities are critically dependent on the core or central tetrapeptide sequence, His-Phe-Arg-Trp, and in alpha-MSH it has been demonstrated further that a reverse-turn type conformation exists at this pharmacophore. To probe the receptor active conformation of the pharmacophore His-Phe-Arg-Trp in gamma-MSH, two different series of gamma-MSH analogues have been designed and synthesized and their biological activities determined at hMC3R, hMC4R, and hMC5R. The 1st series consists of a cyclic scan using different disulfides or lactam bridges.

View Article and Find Full Text PDF

It has been shown by extensive studies that alpha-MSH bioactivity is critically dependent on the core or central tetrapeptide sequence, His-Phe-Arg-Trp, however with poor selectivity for the human MC3R-MC5R. The structure-activity relationships study here is aimed at identifying lead structures or templates of this core sequence by the use of different conformational constraints that might impart changes in its topography and thus promote differences in potency and selectivity at these receptors. Our peptide library consists of a novel series of cyclic alpha-MSH analogues that have disulfide bridges between Cys or Cys-like residues at positions 4 and 10, giving rise to 23-membered rings fused at the C-terminal end with the C-terminal fragment of beta-MSH (Pro-Pro-Lys-Asp).

View Article and Find Full Text PDF

The melanotropin peptides alpha-MSH, gamma-MSH, and beta-MSH are believed to be the natural ligands for the four melanocortin receptors, MC1R, MC3R, MC4R, and MC5R. However, these peptides generally have low selectivity for these receptors. We report on some approaches to the development of selective agonists and antagonists peptide ligands for these receptors.

View Article and Find Full Text PDF

In an effort to develop highly selective and potent agonists and/or antagonists for the hMC3 and hMC4 receptors, a new approach involving the use of linker arms and a backbone to side chain cyclization strategy was employed. Three key analogues were identified to have the required selectivity and potency at the hMC3 or hMC4 receptors, implicated to play pivotal roles in energy homeostasis and other biological effects. The novel cyclic peptide (O)C-CH(2)-CH(2)-C(O)-c-[His(6)-D-Phe(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2) (1) was found to be a highly selective and potent agonist of the hMC4 receptor.

View Article and Find Full Text PDF