Metformin is a first-line drug in the treatment of type-2 diabetes mellitus (T2DM). In addition to its antigluconeogenic and insulin-sensitizing properties, metformin has emerged as a potent inhibitor of the chronic inflammatory response of macrophages. In particular, metformin treatment has been shown to reduce expression of interleukin (IL-) 1β during long-term exposure to the pro-inflammatory stimulus lipopolysaccharide (LPS) through a reduction in reactive oxygen species (ROS), which decreases the levels of the hypoxia-inducible factor (HIF) 1-α, and through enhanced expression of IL-10.
View Article and Find Full Text PDFBoth conventional T (Tconv) cells and regulatory T (Treg) cells are activated through ligation of the T cell receptor (TCR) complex, leading to the induction of the transcription factor NF-κB. In Tconv cells, NF-κB regulates expression of genes essential for T cell activation, proliferation, and function. However the role of NF-κB in Treg function remains unclear.
View Article and Find Full Text PDFRegulatory T cells (Tregs) play a pivotal role in the inhibition of anti-tumor immune responses. Understanding the mechanisms governing Treg homeostasis may therefore be important for development of effective tumor immunotherapy. We have recently demonstrated a key role for the canonical nuclear factor κB (NF-κB) subunits, p65 and c-Rel, in Treg identity and function.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
March 2015
The expression of eukaryotic mRNAs is achieved though an intricate series of molecular processes that provide many steps for regulating the production of a final gene product. However, the relationships between individual steps in mRNA biosynthesis and the rates at which they occur are poorly understood. By applying RNA-seq to chromatin-associated and soluble nucleoplasmic fractions of RNA from Lipid A-stimulated macrophages, we examined the timing of exon ligation and transcript release from chromatin relative to the induction of transcription.
View Article and Find Full Text PDFMacrophages respond to inflammatory stimuli by modulating the expression of hundreds of genes in a defined temporal cascade, with diverse transcriptional and posttranscriptional mechanisms contributing to the regulatory network. We examined proinflammatory gene regulation in activated macrophages by performing RNA-seq with fractionated chromatin-associated, nucleoplasmic, and cytoplasmic transcripts. This methodological approach allowed us to separate the synthesis of nascent transcripts from transcript processing and the accumulation of mature mRNAs.
View Article and Find Full Text PDFWe describe a broad mechanistic framework for the transcriptional induction of mammalian primary response genes by Toll-like receptors and other stimuli. One major class of primary response genes is characterized by CpG-island promoters, which facilitate promiscuous induction from constitutively active chromatin without a requirement for SWI/SNF nucleosome remodeling complexes. The low nucleosome occupancy at promoters in this class can be attributed to the assembly of CpG islands into unstable nucleosomes, which may lead to SWI/SNF independence.
View Article and Find Full Text PDF