Publications by authors named "Dev Kumar Das"

In medical practice, the mitotic cell count from histological images acts as a proliferative marker for cancer diagnosis. Therefore, an accurate method for detecting mitotic cells in histological images is essential for cancer screening. Manual evaluation of clinically relevant image features that might reflect mitotic cells in histological images is time-consuming and error prone, due to the heterogeneous physical characteristics of mitotic cells.

View Article and Find Full Text PDF

Identification of various constituent layers such as epithelial, subepithelial, and keratin of oral mucosa and characterization of keratin pearls within keratin region as well, are the important and mandatory tasks for clinicians during the diagnosis of different stages in oral cancer (such as precancerous and cancerous). The architectural variations of epithelial layers and the presence of keratin pearls, which can be observed in microscopic images, are the key visual features in oral cancer diagnosis. The computer aided tool doing the same identification task would certainly provide crucial aid to clinicians for evaluation of histological images during diagnosis.

View Article and Find Full Text PDF

In this paper, we have presented a new computer-aided technique for automatic detection of nucleated red blood cells (NRBCs) or normoblast cell from peripheral blood smear image. The proposed methodology initiates with the localization of the nucleated cells by adopting multilevel thresholding approach in smear images. A novel colour space transformation technique has been introduced to differentiate nucleated blood cells [white blood cells (WBCs) and NRBC] from red blood cells (RBCs) by enhancing the contrast between them.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) has contributed 90% of oral cancer worldwide. In situ histological evaluation of tissue sections is the gold standard for oral cancer detection. Formation of keratinization and keratin pearl is one of the most important histological features for OSCC grading.

View Article and Find Full Text PDF

The aim of this paper was to develop a computer assisted tissue classification (granulation, necrotic, and slough) scheme for chronic wound (CW) evaluation using medical image processing and statistical machine learning techniques. The red-green-blue (RGB) wound images grabbed by normal digital camera were first transformed into HSI (hue, saturation, and intensity) color space and subsequently the "S" component of HSI color channels was selected as it provided higher contrast. Wound areas from 6 different types of CW were segmented from whole images using fuzzy divergence based thresholding by minimizing edge ambiguity.

View Article and Find Full Text PDF

The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells.

View Article and Find Full Text PDF

The objective of this study is to address quantitative microscopic approach for automated screening of erythrocytes in anaemic cases using scanning electron microscopic (SEM) images of unstained blood cells. Erythrocytes were separated from blood samples and processed for SEM imaging. Thereafter, erythrocytes were segmented using marker controlled watershed transformation technique.

View Article and Find Full Text PDF