Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.
View Article and Find Full Text PDFThe exploration of increasingly specific brain structures and their relationships, in more nuanced ways, has facilitated the generation of databases for gene expression, connectivity, cell morphology, and electrophysiology. However, neurochemistry, the study of neurochemical environment and transmission, has not yet warranted a public database, despite the plethora of data published. From our viewpoint, a neurochemical database is overdue and would allow the field of neurochemistry to develop facilitating, standardization and reference values, reproducibility, resource efficiency, preservation and accessibility of raw data, hypothesis development and exploration, and metadata analysis.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
The antidepressant-like activity of two psychoplastogens, ibogainalog (IBG) and ibogaminalog (DM506), was studied in naïve mice using the forced swim test (FST) and tail suspension test (TST). The behavioral results showed that a single administration of 25 mg/kg DM506 or 10 mg/kg IBG induced antidepressant-like activity in naïve mice in a volinanserin-sensitive manner that persisted for 72 h. Similar results were observed using the chronic immobilization stress (CIS) test, in which depression symptoms were reduced for 48 h.
View Article and Find Full Text PDFInt J Biochem Cell Biol
November 2024
The study of the mechanism of action of classical psychedelics has gained significant interest due to their clinical potential in the treatment of several psychiatric conditions, including major depressive and anxiety disorders. These drugs bind 5-hydroxytryptamine receptors (5-HTR) including 5-HTR, 5-HTR, 5-HTR, and/or 5-HTR, as well as other targets. 5-HTRs regulate the activity of ascending monoaminergic neurons, a mechanism primarily involved in the action of classical antidepressant drugs, antipsychotics, and drugs of abuse.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD.
View Article and Find Full Text PDFL-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively.
View Article and Find Full Text PDFThe sedative and anxiolytic-like activity of two coronaridine congeners, (+)-catharanthine and (-)-18-methoxycoronaridine (18-MC), was studied in male and female mice. The underlying molecular mechanism was subsequently determined by fluorescence imaging and radioligand binding experiments. The loss of righting reflex and locomotor activity results showed that both (+)-catharanthine and (-)-18-MC induce sedative effects at doses of 63 and 72 mg/kg in a sex-independent manner.
View Article and Find Full Text PDFThe antidepressant-like activity of (+)-catharanthine and (-)-18-methoxycoronaridine [(-)-18-MC] was studied in male and female mice using forced swim (FST) and tail suspension tests (TST). The underlying molecular mechanism was assessed by electrophysiological, radioligand, and functional experiments. The FST results showed that acute administration (40 mg/kg) of (+)-catharanthine or (-)-18-MC induces similar antidepressant-like activity in male and female mice at 1 h and 24 h, whereas the TST results showed a lower effect for (-)-18-MC at 24 h.
View Article and Find Full Text PDFType-2 Diabetes (T2D) is characterized by insulin resistance and accompanied by psychiatric comorbidities including major depressive disorders (MDD). Patients with T2D are twice more likely to suffer from MDD and clinical studies have shown that insulin resistance is positively correlated with the severity of depressive symptoms. However, the potential contribution of central insulin signaling in MDD in patients with T2D remains elusive.
View Article and Find Full Text PDFThe activity of monoamine oxidases (MAOs) in the brain is often associated with neurodegenerative diseases. The study of MAOs in vivo or ex vivo is generally performed using MAO inhibitors and rarely using substrates. We present a pharmacological approach using intracerebral microdialysis to study the activity of MAO in the striatum and the prefrontal cortex of rats.
View Article and Find Full Text PDFThe neuronal-specific SNORD115 has gathered interest because its deficiency may contribute to the pathophysiology of Prader-Willi syndrome (PWS), possibly by altering post-transcriptional regulation of the gene encoding the serotonin (HTR2C) receptor. Yet, Snord115-KO mice do not resume the main symptoms of PWS, and only subtle-altered A-to-I RNA editing of Htr2c mRNAs was uncovered. Because HTR2C signaling fine-tunes the activity of monoaminergic neurons, we addressed the hypothesis that lack of Snord115 alters monoaminergic systems.
View Article and Find Full Text PDFDescending control from the brain to the spinal cord shapes our pain experience, ranging from powerful analgesia to extreme sensitivity. Increasing evidence from both preclinical and clinical studies points to an imbalance toward descending facilitation as a substrate of pathological pain, but the underlying mechanisms remain unknown. We used an optogenetic approach to manipulate serotonin (5-HT) neurons of the nucleus raphe magnus that project to the dorsal horn of the spinal cord.
View Article and Find Full Text PDFChildhood absence epilepsy (CAE) is characterized by absence seizures, which are episodes of lack of consciousness accompanied by electrographic spike-wave discharges. About 60% of children and adolescents with absence seizures are affected by major neuropsychological comorbidities, including anxiety. Endocannabinoids and monoamines are likely involved in the pathophysiology of these CAE psychiatric comorbidities.
View Article and Find Full Text PDFSerotonin (5-HT) is an attractive neurotransmitter system, in terms of physiology, physiopathology, and medicines [...
View Article and Find Full Text PDFThe discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson's disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R-D3R heteromeric interactions in the dorsal striatum.
View Article and Find Full Text PDFMicrogravity, one of the conditions faced by astronauts during spaceflights, triggers brain adaptive responses that could have noxious consequences on behaviors. Although monoaminergic systems, which include noradrenaline (NA), dopamine (DA), and serotonin (5-HT), are widespread neuromodulatory systems involved in adaptive behaviors, the influence of microgravity on these systems is poorly documented. Using a model of simulated microgravity (SMG) during a short period in Long Evans male rats, we studied the distribution of monoamines in thirty brain regions belonging to vegetative, mood, motor, and cognitive networks.
View Article and Find Full Text PDFNicotine, the addictive component of tobacco, has bivalent rewarding and aversive properties. Recently, the lateral habenula (LHb), a structure that controls ventral tegmental area (VTA) dopamine (DA) function, has attracted attention as it is potentially involved in the aversive properties of drugs of abuse. Hitherto, the LHb-modulation of nicotine-induced VTA neuronal activity in vivo is unknown.
View Article and Find Full Text PDFKey Points: In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping.
View Article and Find Full Text PDFhas launched a Special Issue entitled "Dopamine D3 Receptor: Contemporary Views of Its Function and Pharmacology for Neuropsychiatric Diseases [...
View Article and Find Full Text PDF