Visualization of the collisional merging formation process of field-reversed configuration (FRC) has been attempted. In the collisional merging formation process, two initial FRC-like plasmoids are accelerated toward each other by a magnetic pressure gradient. The relative speed of the collision reaches several times the typical ion sonic speed and Alfvénic speed.
View Article and Find Full Text PDFIn TAE Technologies' current experimental device, C-2W, neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. Diagnosis of these fast ions is therefore critical for understanding the behavior of the FRC. Neutral Particle Analyzers (NPAs) are used to measure the energy spectrum of fast ions that charge exchange on background or beam neutrals and are lost from the plasma.
View Article and Find Full Text PDFIn this study, a newly developed correction method with external magnetic measurements for the magnetohydrodynamics (MHD) simulation of the collisional merging formation of a field-reversed configuration (FRC) realized the estimation of the internal structure of the FRCs without invasive internal measurements. In the collisional merging formation of FRCs, an FRC is formed via merging of two initial FRC-like plasmoids at supersonic/Alfvénic velocity. An invasive diagnostic may also interfere with the collisional merging formation process.
View Article and Find Full Text PDFField-reversed configuration (FRC) Amplification via Translation-Collisional Merging (FAT-CM) experiments have recently commenced to study physics phenomena of colliding and merged FRC plasma states. Two independently formed FRCs are translated into the confinement region of the FAT-CM device, collided near the mid-plane of the device with a relative speed of up to ∼400 km/s, and a final merged FRC plasma state is achieved. To measure internal magnetic field profiles of the translated and merged FRC plasmas as well as to understand its collisional-merging process, an internal magnetic probe array, developed by TAE Technologies, has been installed in the mid-plane of the FAT-CM device.
View Article and Find Full Text PDFActive control of field reversed configuration (FRC) devices requires a method to determine the flux surface geometry and dynamic properties of the plasma during both transient and steady-state conditions. The current tomography (CT) method uses Bayesian inference to determine the plasma current density distribution using both the information from magnetic measurements and a physics model in the prior. Here we show that, from the inferred current sources, the FRC topology and its axial stability properties are readily obtained.
View Article and Find Full Text PDFAn economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices.
View Article and Find Full Text PDFThe first measurements of fast-ion D-alpha (FIDA) radiation have been acquired on C-2U, Tri Alpha Energy's advanced, beam-driven field-reversed configuration (FRC). These measurements are also forward modeled by FIDASIM. This is the first measurement and simulation of FIDA carried out on an FRC topology.
View Article and Find Full Text PDFA diagnostic technique for measuring the fast-ion energy distribution in a field-reversed configuration plasma was developed and tested on the C-2 experiment. A deuterium neutral beam modulated at 22 kHz is injected into the plasma, producing a localized charge-exchange target for the confined fast protons. The escaping fast neutrals are detected by a neutral particle analyzer.
View Article and Find Full Text PDFA neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses.
View Article and Find Full Text PDFField reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields.
View Article and Find Full Text PDFA hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-β plasmoids preformed by the dynamic version of field-reversed θ-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (T{i}+T{e}) exceeding 0.
View Article and Find Full Text PDF