Publications by authors named "Dettner K"

A doubt has arisen about the taxonomic status of within the species group due to morphological similarities and lack of molecular data. In this study, a comprehensive morphological and molecular analysis of specimens from Central Europe was conducted, focusing on the Hungarian population. Morphological comparisons of genital structures revealed age-dependent variations, suggesting a gradual transition from to .

View Article and Find Full Text PDF

Springtails (Collembola), tiny hexapod arthropods, are abundant in the soil of most ecosystems, but our knowledge of their secondary metabolites is limited, in contrast to that of insects. In insects, the outer cuticle is usually covered by mixtures of long-chain hydrocarbons serving different functions, such as water regulation or chemical communication. In contrast, the knowledge of the epicuticular chemistry of springtails is scarce.

View Article and Find Full Text PDF

Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs.

View Article and Find Full Text PDF

Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined.

View Article and Find Full Text PDF

Rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine (3), 3-(2-methylbut-1-enyl)pyridine (4), and cicindeloine (5) in their pygidial glands to protect themselves from predation and microorganismic infestation. The biosynthesis of stenusine (3), 3-(2-methylbut-1-enyl)pyridine (4), and cicindeloine (5) was previously investigated in Stenus bimaculatus, Stenus similis, and Stenus solutus, respectively. The piperideine alkaloid cicindeloine (5) occurs also as a major compound in the pygidial gland secretion of Stenus cicindeloides.

View Article and Find Full Text PDF

Moss bugs (Coleorrhyncha: Peloridiidae) are members of the order Hemiptera, and like many hemipterans, they have symbiotic associations with intracellular bacteria to fulfill nutritional requirements resulting from their unbalanced diet. The primary endosymbiont of the moss bugs, Candidatus Evansia muelleri, is phylogenetically related to Candidatus Carsonella ruddii and Candidatus Portiera aleyrodidarum, primary endosymbionts of psyllids and whiteflies, respectively. In this work, we report the genome of Candidatus Evansia muelleri Xc1 from Xenophyes cascus, which is the only obligate endosymbiont present in the association.

View Article and Find Full Text PDF

The pygidial defense glands of the Steninae consist of two big (r1) and two smaller (r2) secretion filled sac-like reservoirs with associated secretory tissues and basal eversible membrane structures. The secretion is made up of deterrent and antimicrobial alkaloids stored in r1 as well as terpenes in r2. The gland cells filling r1 form a band shaped secretory tissue (g1) in an invagination of the reservoir membrane.

View Article and Find Full Text PDF

Many hemipterans are associated with symbiotic bacteria, which are usually found intracellularly in specific bacteriomes. In this study, we provide the first molecular identification of the bacteriome-associated, obligate endosymbiont in a Gondwanan relict insect taxon, the moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae), which represents one of the oldest lineages within the Hemiptera. Endosymbiotic associations of fifteen species of the family were analysed, covering representatives from South America, Australia/Tasmania and New Zealand.

View Article and Find Full Text PDF

Larvae of the Chrysomelina species Phaedon cochleariae, Hydrothassa marginella, Phratora vulgatissima, Gastrophysa viridula, Gastrophysa atrocyanea, Gastrophysa cyanea and Gastrophysa polygoni produce the iridoid chrysomelidial (1) to defend themselves against predators. Feeding experiments with a deuterated precursor ([(2)H(5)]8-hydroxygeraniol 9) and in vitro isotope exchange experiments with defensive secretion in (2)H(2)O revealed differences in the cyclisation of the ultimate precursor 8-oxogeranial (8) to 1, between members of the genus Gastrophysa and all other species. In P.

View Article and Find Full Text PDF

Rove beetles of the genus Stenus Latreille and the genus Dianous Leach possess pygidial glands containing a multifunctional secretion of piperidine and pyridine-derived alkaloids as well as several terpenes. One important character of this secretion is the spreading potential of its different compounds, stenusine, norstenusine, 3-(2-methyl-1-butenyl)pyridine, cicindeloine, α-pinene, 1,8-cineole and 6-methyl-5-heptene-2-one. The individual secretion composition enables the beetles to skim rapidly and far over the water surface, even when just a small amount of secretion is emitted.

View Article and Find Full Text PDF

To protect themselves from predation and microorganismic infestation, rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine, 3-(2-methyl-1-butenyl)pyridine, and cicindeloine in their pygidial glands. The biosynthesis of stenusine and 3-(2-methyl-1-butenyl)pyridine was previously investigated in Stenus bimaculatus and Stenus similis, respectively. Both molecules follow the same biosynthetic pathway, where the N-heterocyclic ring is derived from L-lysine and the side chain from L-isoleucine.

View Article and Find Full Text PDF

Here we present comparative data on the localization and identity of intracellular symbionts among the superfamily Lygaeoidea (Insecta: Hemiptera: Heteroptera: Pentatomomorpha). Five different lygaeoid species from the families Blissidae and Lygaeidae (sensu stricto; including the subfamilies Lygaeinae and Orsillinae) were analyzed. Fluorescence in situ hybridization (FISH) revealed that all the bugs studied possess paired bacteriomes that are differently shaped in the abdomen and harbor specific endosymbionts therein.

View Article and Find Full Text PDF

Most rove beetles of the genus Stenus protect themselves against microorganisms and predators such as ants and spiders by producing the alkaloid stenusine (1) in their pygidial glands. The biosynthesis of 1 was previously investigated in S. bimaculatus, where L-lysine forms the piperidine ring, L-isoleucine the side chain, and acetate the N-ethyl group.

View Article and Find Full Text PDF

Bacterial endosymbionts from female Paederus rove beetles are hitherto uncultured, phylogenetically related to Pseudomonas sp., and produce the polyketide pederin, which exhibits strong cytotoxic effects and antitumoral activities. The location of such endosymbionts inside beetles and on beetles' eggs is hypothesized based on indirect evidence rather than elucidated.

View Article and Find Full Text PDF

Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells.

View Article and Find Full Text PDF

Studies on attention to tactile stimuli have produced conflicting results concerning the possibility and/or direction of modulation of early somatosensory-evoked fields (SEFs). To evaluate sources of these conflicting results, the same subjects performed four different tasks in which the stimulation site, type, and intensity were kept constant. Twelve subjects performed an oddball-like tactile task, two different one-back tactile tasks, and a visual task, while two distal phalanges of the index and ring finger were stimulated.

View Article and Find Full Text PDF

In contrast to specific bacterial symbionts of many stinkbugs, which are harboured extracellularly in the lumina of midgut sacs or tubular outgrowths, the obligate endosymbiont of birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae) resides in a red-coloured, raspberry-shaped mycetome, localized abdominally, close to the midgut section. Phylogenetic analysis, based on the 16S rRNA gene and the groEL (chaperonin) gene, showed that the bacteria belong to the gamma-subdivision of the Proteobacteria and revealed a phylogenetic relationship with bacterial endosymbionts of Wigglesworthia glossinidia, the primary symbiont of tse-tse fly Glossina brevipalpis. Furthermore, RFLP analysis and sequencing revealed that K.

View Article and Find Full Text PDF

In the present study, Rickettsia sp. was detected in four water beetles of the genus Deronectes (Dytiscidae) for the first time. Rickettsiae were found in 100% of examined specimens of Deronectes platynotus (45/45), 39.

View Article and Find Full Text PDF

Three new pyridine alkaloids were detected in the pygidial glands of some Stenus species. The chemotaxonomic significance of the occurrence of these alkaloids and stenusine in different Stenus species is discussed. The antimicrobial properties of (Z)- and (E)-3-(2-methyl-1-butenyl)-pyridine and the deterrent activities of stenusine and norstenusine were investigated.

View Article and Find Full Text PDF

The gas exchange in adult diving beetles (Coleoptera: Dytiscidae) relies on a subelytral air store, which has to be renewed in regular intervals at the water surface. The dive duration varies from a few minutes to 24 h depending on the species, activity, and temperature. However, some species remain submerged for several weeks.

View Article and Find Full Text PDF

A chemical and enzymatic synthesis was developed for five variant buprestins termed D, E, F, G and H found in jewel beetles (Coleoptera: Buprestidae). Selective acylation of the primary hydroxyl group of beta-D-glucopyranose-1,2-bis(pyrrole-2-carboxylate) with substituted benzoic or cinnamic acid derivatives followed by deprotection gave the target compounds. Using coinjection the identity with the natural extracts was confirmed.

View Article and Find Full Text PDF

The rove beetles of the genus Stenus Latreille synthesize the alkaloid stenusine in their pygidial glands, which are located in the last three segments of their abdomen. It is proposed that stenusine is derived from the two amino acids, L-lysine and L-isoleucine. Feeding S.

View Article and Find Full Text PDF

Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands.

View Article and Find Full Text PDF

The larval funnel warts of 14 species of Lymantriidae (tussock moths) were investigated by means of scanning electron microscopy. The smaller, paired osmeteria on other abdominal segments were also inspected in four of the species. It seems that the bilaterally symmetrical funnel warts have developed by fusion of two smaller, single osmeteria.

View Article and Find Full Text PDF

A novel type of a microbial N-acyl amino acid hydrolase (AAH) from insect gut bacteria was purified, cloned and functionally characterized. The enzyme was obtained from Microbacterium arborescens SE14 isolated from the foregut of larvae of the generalist herbivore Spodoptera exigua. The substrates of AAH are N-acyl-glutamines previously reported to elicit plant defence reactions after introduction into the leaf during feeding.

View Article and Find Full Text PDF