Defining the mantle structure that lies beneath hot spots is important for revealing their depth of origin. Three-dimensional images of shear-wave velocity beneath the Hawaiian Islands, obtained from a network of sea-floor and land seismometers, show an upper-mantle low-velocity anomaly that is elongated in the direction of the island chain and surrounded by a parabola-shaped high-velocity anomaly. Low velocities continue downward to the mantle transition zone between 410 and 660 kilometers depth, a result that is in agreement with prior observations of transition-zone thinning.
View Article and Find Full Text PDFThe oceanic crust extends over two-thirds of the Earth's solid surface, and is generated along mid-ocean ridges from melts derived from the upwelling mantle. The upper and middle crust are constructed by dyking and sea-floor eruptions originating from magma accumulated in mid-crustal lenses at the spreading axis, but the style of accretion of the lower oceanic crust is actively debated. Models based on geological and petrological data from ophiolites propose that the lower oceanic crust is accreted from melt sills intruded at multiple levels between the Moho transition zone (MTZ) and the mid-crustal lens, consistent with geophysical studies that suggest the presence of melt within the lower crust.
View Article and Find Full Text PDFMantle upwelling is essential to the generation of new oceanic crust at mid-ocean ridges, and it is generally assumed that such upwelling is symmetric beneath active ridges. Here, however, we use seismic imaging to show that the isotropic and anisotropic structure of the mantle is rotated beneath the East Pacific Rise. The isotropic structure defines the pattern of magma delivery from the mantle to the crust.
View Article and Find Full Text PDFThe Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres.
View Article and Find Full Text PDFTomographic images of upper mantle velocity structure beneath an overlapping spreading center (OSC) on the East Pacific Rise indicate that this ridge axis discontinuity is underlain by a continuous region of low P-wave velocities. The anomalous structure can be explained by an approximately 16-kilometer-wide region of high temperatures and melt fractions of a few percent by volume. Our results show that OSCs are not necessarily associated with a discontinuity in melt supply and that both OSC limbs are supplied with melt from a mantle source located beneath the OSC.
View Article and Find Full Text PDFWide-angle seismic data along the Mantle Electromagnetic and Tomography (MELT) arrays show that the thickness of 0.5- to 1. 5-million-year-old crust of the Nazca Plate is not resolvably different from that of the Pacific Plate, despite an asymmetry in depth and gravity across this portion of the East Pacific Rise.
View Article and Find Full Text PDFSeismic reflection data from the East Pacific Rise between 17 degrees 05' and 17 degrees 35'S image a magma lens that varies regularly in depth and width as ridge morphology changes, confirming the notion that axial morphology can be used to infer ridge magmatic state. However, at 17 degrees 26'S, where the ridge is locally shallow and broad, the magma lens is markedly shallower and wider than predicted from regional trends. In this area, submersible dives reveal recent volcanic eruptions.
View Article and Find Full Text PDFMyeloid leukemias have been shown to secrete as well as respond to cytokines such as interleukin-3 (IL-3) with an increased growth rate and may therefore become self-stimulatory through an external autocrine mechanism. In vitro evidence that IL-3 is functional within the intracellular compartment has been obtained through modification of the murine IL-3 gene to encode for the amino acids SEKDEL on the carboxyl terminus of the protein, resulting in preferential intracellular retention. The ability of bone marrow-derived hematopoietic progenitor cells to increase their proliferative capacity through intracellular mechanisms was investigated in vivo using retroviruses containing the wild-type or SEKDEL-modified IL-3 gene, transcriptionally regulated by the retroviral long terminal repeat (LTR) or by the SV40 early promoter, in lethally irradiated, bone marrow-reconstituted mice.
View Article and Find Full Text PDFSeismic data from the ultrafast-spreading (150 to 162 millimeters per year) southern East Pacific Rise show that the rise axis is underlain by a thin (less than 200 meters thick) extrusive volcanic layer (seismic layer 2A) that thickens rapidly off axis. Also beneath the rise axis is a narrow (less than 1 kilometer wide) melt sill that is in some places less than 1000 meters below the sea floor. The small dimensions of this molten body indicate that magma chamber size does not depend strongly on spreading rate as predicted by many ridge-crest thermal models.
View Article and Find Full Text PDFN-cadherin is a calcium-dependent, cell adhesion molecule that has been proposed to play a role in morphogenesis in vertebrate embryos. Throughout early neural development, N-cadherin is expressed during the morphogenetic changes that occur when ectoderm, in response to neural induction, forms a neural plate and tube. To study the role of N-cadherin in these processes, cDNA clones encoding Xenopus laevis N-cadherin were isolated and used to study the expression of N-cadherin in frog embryos.
View Article and Find Full Text PDFProducts of ras genes are synthesized as precursors in the cytosol and transported to the plasma membrane by a process which involves posttraslational modification by fatty acid. In this paper, we present evidence for the occurrence in the cytosol of an intermediate modification of ras proteins prior to the fatty acid acylation. The modification is detected by a slight shift in the mobility of the protein on SDS polyacrylamide gel.
View Article and Find Full Text PDFT cells and monocytes/macrophages (Mo) have been shown to play important roles in modulating the growth and differentiation of human erythroid and myeloid progenitors and have been implicated in the mechanisms of gamma interferon (gamma-IFN) mediated suppression of normal human marrow erythroid progenitors in vitro. In order to assess the importance of T cells and Mo in the growth of human megakaryocytic progenitors (CFU-Mk) in vitro and to investigate gamma-IFN effect on human megakaryocytopoiesis, normal human marrow (BM) was cultured in plasma clot in the presence and absence T cells, Mo and gamma-IFN under conditions that support the formation of CFU-Mk derived colonies. The removal of T cells from BM (BM-T) caused a significant decrease (71.
View Article and Find Full Text PDFHyla chrysoscelis (2n = 24) and H. versicolor (2n = 48) are a diploid-tetraploid species pair of tree frogs. Hybridization saturation of isolated 125I-labeled ribosomal RNAs (rRNAs) with filter-immobilized DNA shows that there are twice as many rRNA genes in the tetraploid as in the diploid.
View Article and Find Full Text PDFPrevious in vitro studies on committed hematopoietic progenitors have suggested that polycythemia vera (PV) is a clonal disorder arising in a pluripotential hematopoietic stem cell. In this study, recently developed technics for clonal assay of a human multipotential progenitor cell (CFU-GEMM) were used to assess the functional characteristics of CFU-GEMM in 19 PV patients. These studies showed: (a) increased numbers of detectable CFU-GEMM in blood and bone marrow samples of PV patients as compared with normals (P less than 0.
View Article and Find Full Text PDFThe distribution of labeled cells in the chaffinch brain has been examined by autoradiography after an intramuscular injection of [3H]testosterone. In the telencephalon labeled cells were particularly concentrated in nucleus magnocellularis neostriatalis anterioris, nucleus septalis lateralis, and hyperstriatum ventrale, pars caudale. In the diencephalon the nucleus periventricularis magnocellularis, the nucleus magnocellularis posterioris and the area infundibularis contained many heavily labeled cells.
View Article and Find Full Text PDF