Publications by authors named "Detrain C"

Insect societies, which are at a high risk of disease outbreaks, have evolved sanitary strategies that contribute to their social immunity. Here, we investigated in the red ant how the discarding of nestmate cadavers is socially organized depending on the associated pathogenicity. We examined whether necrophoresis is carried out by a specific functional group of workers or by any nestmates that may become short-term specialists.

View Article and Find Full Text PDF

Honeydew is the keystone of many interactions between aphids and their predators, parasitoids, and mutualistic partners. Despite the crucial importance of honeydew in aphid-ant mutualism, very few studies have investigated the potential impacts of climate change on its production and composition. Here, we quantified changes in sugar compounds and the amount of honeydew droplets released by Aphis fabae reared on Vicia faba plants under elevated temperature and/or CO conditions.

View Article and Find Full Text PDF

Although the activity levels of insect societies are assumed to contribute to their ergonomic efficiency, most studies of the temporal organization of ant colony activity have focused on only a few species. Little is known about the variation in activity patterns across colonies and species, and in different environmental contexts. In this study, the activity patterns of colonies of the red ant Myrmica rubra were characterized over 15 consecutive days.

View Article and Find Full Text PDF

The ecological success of ants relies on their high level of sociality and cooperation between genetically related nestmates. However, these group-living insects suffer from elevated risks of disease outbreak in the whole nest. To face this sanitary challenge, social and spatial distancing of pathogen-exposed individuals from susceptible nestmates appear to be simple, although efficient, ways to limit the propagation of contact-transmitted pathogens.

View Article and Find Full Text PDF

Eusocial insects are exposed to a wide range of pathogens while foraging outside their nest. We know that opportunistic scavenging ants are able to assess the sanitary state of food and to discriminate a prey which died from infection by the entomopathogenic fungus Metarhizium brunneum. Here, we investigate whether a contamination of the environment can also influence the behaviour of foragers, both at the individual and collective level.

View Article and Find Full Text PDF

Ants are the hosts of many microorganisms, including pathogens that are incidentally brought inside the nest by foragers. This is particularly true for scavenging species, which collect hazardous food such as dead insects. Foragers limit sanitary risks by not retrieving highly infectious prey releasing entomopathogenic fungal spores.

View Article and Find Full Text PDF

In social insects, collective choices between food sources are based on self-organized mechanisms where information about resources are locally processed by the foragers. Such a collective decision emerges from the competition between pheromone trails leading to different resources but also between the recruiting stimuli emitted by successful foragers at nest entrances. In this study, we investigated how an additional nest entrance influences the ability of Myrmica rubra ant colonies to exploit two food sources of different quality (1M and 0.

View Article and Find Full Text PDF

The nest architecture of social insects deeply impacts the spatial distribution of nestmates their interactions, information exchanges and collective responses. In particular, the number of nest entrances can influence the interactions taking place beyond the nest boundaries and the emergence of collective structures like foraging trails. Here, we investigated in the field how the number of nest entrances impacted the foraging dynamics of ant colonies.

View Article and Find Full Text PDF

Nests of social insects are an important area for the exchange of food and information among workers. We investigated how the topology of nest chambers (as opposed to nest size or environmental factors) affects the spatial distribution of nestmates and the foraging behavior of Myrmica rubra ant colonies. Colonies were housed in artificial nests, each with same-sized chambers differing in the spatial arrangement of galleries.

View Article and Find Full Text PDF

Insect societies have developed sanitary strategies, one of which is the avoidance of infectious food resources as a primary line of defence. Using binary choices, we investigated whether ants can identify prey that has been artificially infected with the entomopathogenic fungus, . We compared the ants' foraging behaviour towards infected prey at three different stages of fungus development (i) prey covered with fungal conidia, (ii) prey freshly killed by the fungus and (iii) sporulating prey.

View Article and Find Full Text PDF

The ecological success of ants relies on their ability to discover and collectively exploit available resources. In this process, the nest entrances are key locations at which foragers transfer food and information about the surrounding environment. We assume that the number of nest entrances regulates social exchanges between foragers and inner-nest workers, and hence influences the foraging efficiency of the whole colony.

View Article and Find Full Text PDF

Nest entrances are key locations where information about environmental opportunities and constraints are shared between foragers and inner-nest workers. However, despite its functional value, we still lack a detailed characterisation of the interface between the nest and the environment. Here, we identified the social interface in the ant Myrmica rubra as being the population of ants that faced the nest entrance and that received significantly more contacts from returning foragers than other nearby ants.

View Article and Find Full Text PDF

As entomopathogens are detrimental to the development or even survival of insect societies, ant colonies should avoid digging into a substrate that is contaminated by fungal spores. Here, we test the hypotheses that ant workers (i) detect and avoid fungus-infected substrates and (ii) excavate nest patterns that minimize their exposure to entomopathogenic spores. Small groups of workers were allowed to dig their nest in a two-dimensional sand plate of which one half of the substrate contained fungal spores of , while the other half was spore-free.

View Article and Find Full Text PDF

Myrmecochory is the process of seed dispersal by ants; however, it is highly challenging to study, mainly because of the small size of both partners and the comparatively large range of dispersal. The mutualistic interaction between ants and seeds involves the former retrieving diaspores, consuming their elaiosome (a nutrient-rich appendage), and the rejection of seeds from the nest. Here, we introduce a semi-automated method based on stitching high resolution images together, allowing the study of myrmecochory in a controlled environment over time.

View Article and Find Full Text PDF

Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO and O levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO and O levels.

View Article and Find Full Text PDF

Social insects have evolved an array of individual and social behaviours that limit pathogen entrance and spread within the colony. The detection of ectoparasites or of fungal spores on a nestmate body triggers their removal by allogrooming and appears as a primary component of social prophylaxis. However, in the case of fungal infection, one may wonder whether ant workers are able to detect, discriminate and keep at bay diseased nestmates that have no spores over their cuticle but which constitute a latent sanitary risk due to post-mortem corpse sporulation.

View Article and Find Full Text PDF

Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction.

View Article and Find Full Text PDF

Myrmecochorous diaspores bear a nutrient-rich appendage, the elaiosome, attractive to ant workers that retrieve them into the nest, detach the elaiosome and reject the seed intact. While this interaction is beneficial for the plant partner by ensuring its seed dispersal, elaiosome consumption has various effects -positive, negative or none - on ants' demography and survival, depending on both the ant/plant species involved. In this context, the contribution of ants to seed dispersal strongly varies according to the ant/plant pairs considered.

View Article and Find Full Text PDF

Ants have developed prophylactic and hygienic behaviours in order to limit risks of pathogenic outbreaks inside their nest, which are often called social immunity. Here, we test whether ants can adapt the "social immune response" to the level of pathogenic risk in the colony. We challenged Myrmica rubra colonies with dead nestmates that had either died from being frozen or from infection by the fungus Metarhizium anisopliae.

View Article and Find Full Text PDF

In social species, food exploitation is a challenging cooperative task that requires communication and coordination with some individuals that are more influential in the final foraging process. Among recruiters of the ant Tetramorium caespitum that have discovered food, some individuals act as leaders that physically guide groups of recruits until they reach the food source. Here, we discovered that highly motivated recruiters that focus their recruiting activity on areas close to the nest entrance and that perform a high number of contacts with nestmates in a short period of time are more likely to lead a group of followers on their next foraging trip.

View Article and Find Full Text PDF

Sociality increases exposure to pathogens. Therefore, social insects have developed a wide range of behavioural defences, known as 'social immunity'. However, the benefits of these behaviours in terms of colony survival have been scarcely investigated.

View Article and Find Full Text PDF

Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e.

View Article and Find Full Text PDF

The aphid-ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e.

View Article and Find Full Text PDF

In many vertebrates and invertebrates, living in a group may influence the life history traits, physiology and behaviour of its individual members, whereas genetic relatedness affects social interactions among individuals in a group. The two-spotted spider mite Tetranychus urticae is characterised by a communal organization, in which silk production plays a key role. A silken web protects the colony against biotic and abiotic agents such as predators, competitors, humidity, wind, rain and acaricides.

View Article and Find Full Text PDF

In order to decrease the risk of pathogen transmission, ants remove corpses from the vicinity of nests, but little is known about the underlying mechanisms. In particular, it is unclear how the odor profile of corpses changes with time since death and how any changes might relate to behavior. We have addressed these questions in the red ant Myrmica rubra, where we asked how the time since death determines the ability of workers to discriminate a dead individual from a live one, and whether dead workers are removed in a similar way when they originate from the same or an alien colony.

View Article and Find Full Text PDF