Publications by authors named "Detlef Schmiedl"

The electrochemical conversion of biobased intermediates offers an attractive and sustainable process for the production of green chemicals. One promising synthesis route is the production of the total vanillin-based polymer polyvanillin, which can be produced by electrochemical pinacolization of divanillin (5-5´bisvanillyl). Divanillin can be easily enzymatically generated from vanillin, a renewable intermediate accessible from lignin on an industrial scale.

View Article and Find Full Text PDF

Vanillin, one of the few biobased aromatic compounds available on an industrial level, is an attractive candidate for the synthesis of biobased polymers and polymer building blocks. This study presents a detailed investigation of the reductive electrochemical coupling process by pinacolization of vanillin and divanillin in an electrochemical H-type cell setup to the polymer building block hydrovanilloin and to polyvanillin, respectively. Therein, different cathode materials are screened by linear sweep voltammetry for their capability and activity of hydrodimerization of phenolic aromatic aldehydes in alkaline aqueous media.

View Article and Find Full Text PDF

APC-germline mutation creates predisposition for intestinal tumorigenesis. APCMin/+ mice, developing tumors preferentially in the small intestine and only minimally in the colon, were fed pectin-enriched diets (10% galacturonan; degree of methoxylation=37.0 and 70.

View Article and Find Full Text PDF

Annealing and heat-moisture treatment (HMT) are shown to be suitable methods to increase the yield of resistant starch type 3 (RS3) from Novelose 330 by up to 75%. Peak temperatures of approximately 121 degrees C were used to produce to a sufficiently high thermal stability of the hydrothermal modified RS3 products for a wide range of applications. HMT significantly increased the crystallinity up to 40%.

View Article and Find Full Text PDF

Microbial metabolism is essential in maintaining a healthy mucosa in the large bowel, preferentially through butyrate specific mechanisms. This system depends on starch supply. Two structurally different resistant starches type 3 (RS3) have been investigated with respect to their resistance to digestion, fermentability, and their effects on the composition and turnover of bile acids in rats.

View Article and Find Full Text PDF

Smooth pea starch was used for the production of physiological important resistant starch type III. For reduction of the molecular weight of the starch, different strategies including enzymatic debranching and acid hydrolysis (lintnerization), were tested to obtain an optimal starting material for retrogradation. The resulting polymer chain lengths were analyzed by high-performance anion-exchange chromatography.

View Article and Find Full Text PDF

Banana starch (Musa acuminata var. Nandigobe) was evaluated for its use in generating resistant starch (RS) type III. Structural, physicochemical, and biological properties of these products were analyzed.

View Article and Find Full Text PDF