Grazing incidence small angle X-ray scattering (GISAXS) was used to study the structure and interparticle spacing of monolayers of organic ligand-stabilized iron oxide nanocrystals floating at the air-water interface on a Langmuir trough, and after transfer to a solid support via the Langmuir-Blodgett technique. GISAXS measurements of the nanocrystal arrangement at the air-water interface showed that lateral compression decreased the interparticle spacing of continuous films. GISAXS also revealed that Langmuir-Blodgett transfer of the nanocrystal layers to a silicon substrate led to a stretching of the film, with a significant increase in interparticle spacing.
View Article and Find Full Text PDFThe coating of organic molecules from the solution phase can result in directional crystal growth under certain conditions, even on a smooth isotropic surface and without the need of any kind of graphoexpitaxial preparation of the substrate. Based on reviewing the results from a variety of coating techniques and coating parameters, we identified that it is crucial for the coating speed to match the growth speed of the fastest growing crystal plane to achieve a high degree of directional crystallization.
View Article and Find Full Text PDFLead halide perovskites have been of paramount interest for solution-processable solar cells, reaching power conversion efficiencies larger than 25%. In this spotlight, we will provide a systematic overview of the influence of different solution-based processing routes of lead halide perovskites on their phase transformation and conversion as revealed through in-situ X-ray-scattering experiments. These experiments were performed in conditions closely mimicking thin film processing methods and conditions used for thin film solar cell device fabrication and therefore provide critical information about the mechanism of the phase transformation, its onset, the kinetics, as well as the emergence and disappearance of various (meso)phases along the way.
View Article and Find Full Text PDFBy systematically varying the molecular orientation of poly(3-hexylthiophene-2,5-diyl) (P3HT) in P3HT:fullerene bulk heterojunctions, we show that a mixed face-on and edge-on texture can be beneficial for out-of-plane charge flow in solution processed organic bulk heterojunction solar cells. These results implicate the need to balance in-plane and out-of-plane pathways for efficient charge percolation in bulk heterojunctions.
View Article and Find Full Text PDFControlling the assembly of 2D materials such as graphene oxides (GO) has a significant impact on their properties and performance. One of the critical issues on the processing and handling of GO is that they need to be in dilution solution (0.5 to 2.
View Article and Find Full Text PDFEco-friendly printing is important for mass manufacturing of thin-film photovoltaic (PV) devices to preserve human safety and the environment and to reduce energy consumption and capital expense. However, it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast printing. In this study, we demonstrate for the first time an eco-friendly printing concept for high-performance perovskite solar cells.
View Article and Find Full Text PDFThree-dimensional (3D) periodic ordering of silicon (Si), an inorganic semiconductor, on the mesoscale was achieved by combining block copolymer (BCP) self-assembly (SA) based mesoporous alternating gyroidal network formation with nonequilibrium transient laser heating. 3D continuous and periodically ordered alternating gyroidal mesoporous carbon thin-film networks were prepared from spin coating, SA under solvent vapor annealing (SVA), and thermal processing of mixtures of a triblock terpolymer with resorcinol resols. The resulting mesoporous thin films, acting as structure-directing templates, were backfilled with amorphous silicon (a-Si).
View Article and Find Full Text PDFThe morphology of conjugated polymer thin films, determined by the kinetics of film drying, is closely correlated with their electrical properties. Herein, we focused on dramatic changes in the thin-film morphology of blade-coated poly{[,'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]--5,5'-(2,2'-bithiophene)} caused by the effect of solvent and coating temperature. Through in situ measurements, the evolution of polymer aggregates and crystallites, which plays a decisive role in the formation of the charge-transport pathway, was observed in real time.
View Article and Find Full Text PDFDiblock copolymer thin films of polystyrene-block-poly(dimethyl siloxane) (PS-b-PDMS) featuring PDMS cylinders in a PS matrix are investigated during solvent vapor annealing with mixtures of n-heptane (which is strongly selective for PDMS) and toluene (which is close to nonselective for both blocks). Swelling in the vapor of one of the pure solvents and exchanging it stepwise by the vapor of the other solvent is compared to swelling in a given binary solvent vapor mixture for a prolonged time. The resulting structural changes, such as ordering of the cylinders on a hexagonal lattice and their transition into lamellae, are followed using in situ, real-time grazing-incidence small-angle X-ray scattering (GISAXS).
View Article and Find Full Text PDFWe investigated the physicochemical and transport phenomena governing the self-assembly of colloidal nanoparticles at the interface of two immiscible fluids. By combining in situ grazing-incidence small-angle X-ray scattering (GISAXS) with a temporal resolution of 200 ms and electron microscopy measurements, we gained new insights into the coupled effects of solvent spreading, nanoparticle assembly, and recession of the vapor-liquid interface on the morphology of the self-assembled thin films. We focus on oleate-passivated PbSe nanoparticles dispersed across an ethylene glycol subphase as a model system and demonstrate how solvent parameters such as surface tension, nanoparticle solubility, aromaticity, and polarity influence the mesoscale morphology of the nanoparticle superlattice.
View Article and Find Full Text PDFPerovskite solar cells based on two-dimensional/three-dimensional (2D/3D) hierarchical structure have attracted significant attention in recent years due to their promising photovoltaic performance and stability. However, obtaining a detailed understanding of interfacial mechanism at the 2D/3D heterojunction, for example, the ligand-chemistry-dependent nature of the 2D/3D heterojunction and its influence on charge collection and the final photovoltaic outcome, is not yet fully developed. Here we demonstrate the underlying 3D phase templates growth of quantum wells (QWs) within a 2D capping layer, which is further influenced by the fluorination of spacers and compositional engineering in terms of thickness distribution and orientation.
View Article and Find Full Text PDFMethylammonium lead halide perovskite-based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution-processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications.
View Article and Find Full Text PDFPerovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA MA Cs PbI Br ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells.
View Article and Find Full Text PDFOrganic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature T of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high T of ∼180 °C.
View Article and Find Full Text PDF2D freestanding nanocrystal superlattices represent a new class of advanced metamaterials in that they can integrate mechanical flexibility with novel optical, electrical, plasmonic, and magnetic properties into one multifunctional system. The freestanding 2D superlattices reported to date are typically constructed from symmetrical constituent building blocks, which have identical structural and functional properties on both sides. Here, a general ligand symmetry-breaking strategy is reported to grow 2D Janus gold nanocrystal superlattice sheets with nanocube morphology on one side yet with nanostar on the opposite side.
View Article and Find Full Text PDFThe addition of dimethylsulfoxide and Zonyl into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be combined to achieve excellent electrical, optical, and mechanical properties. We demonstrate that it is possible to produce highly transparent conducting electrodes (FoM > 35) with low Young's modulus and high carrier density. We investigated the relationship between the transport properties of PEDOT:PSS and the morphology and microstructure of these films by performing Hall effect measurement, atomic force microscopy, and grazing incidence wide-angle X-ray scattering (GIWAXS).
View Article and Find Full Text PDFThe two-dimensional (2D) perovskites stabilized by alternating cations in the interlayer space (ACI) define a new type of structure with different physical properties than the more common Ruddlesden-Popper counterparts. However, there is a lack of understanding of material crystallization in films and its influence on the morphological/optoelectronic properties and the final photovoltaic devices. Herein, we undertake in situ studies of the solidification process for ACI 2D perovskite (GA)(MA) Pb I (⟨ n⟩ = 3) from ink to solid-state semiconductor, using solvent mixture of DMSO:DMF (1:10 v/v) as the solvent and link this behavior to solar cell devices.
View Article and Find Full Text PDFSingle crystalline perovskites exhibit high optical absorption, long carrier lifetime, large carrier mobility, low trap-state-density and high defect tolerance. Unfortunately, all single crystalline perovskites attained so far are limited to bulk single crystals and small area wafers. As such, it is impossible to design highly demanded flexible single-crystalline electronics and wearable devices including displays, touch sensing devices, transistors, etc.
View Article and Find Full Text PDFVicinal Au supracrystal surfaces were prepared from Ausingle single domain nanocrystals (NCs), whereas by replacing Ausingle with their polycrystalline counterparts common low-energy supracrystal surfaces were produced. By analogy to atomic crystalline surfaces, we propose a mechanism to explain the formation of such unexpected supracrystal vicinal surfaces, composed of only Ausingle NCs which are non-compact (bct structure) with a coherent alignment of the atomic planes oriented along the [111] superlattice axis and a slight tilt configuration (8.1°) of NCs.
View Article and Find Full Text PDFWhen building artificial nanochannels, having a scalable robust platform with controlled morphology is important, as well as having the option for final functionalization of the channels for the selective transport of water and proteins. We have previously developed asymmetric membranes that have a surface layer of very sharp pore size distribution, surface charge and pore functionalization. Here, a more complex bioinspired platform is reported.
View Article and Find Full Text PDFIn this manuscript, we report on the ordering of the cellulose nanocrystals (CNCs) as they experience shear forces during the casting process. To achieve these measurements, in situ and in real time, we used synchrotron-based grazing incidence wide-angle X-ray scattering (GIWAX). We believe that the GIWAX technique, although not commonly used to probe these types of phenomena, can open new avenues to gain deeper insights into film formation processes and surface-driven phenomena.
View Article and Find Full Text PDFThin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport.
View Article and Find Full Text PDFRuddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) (MA) Pb I phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed.
View Article and Find Full Text PDF