'Black' TiO -in the widest sense, TiO reduced by various treatments-has attracted tremendous scientific interest in recent years because of some outstanding properties; most remarkably in photocatalysis. While the material effects visible light absorption (the blacker, the better), black titania produced by high pressure hydrogenation was recently reported to show another highly interesting feature; noble-metal-free photocatalytic H generation. In a systematic investigation of high-temperature hydrogen treatments of anatase nanoparticles, TEM, XRD, EPR, XPS, and photoelectrochemistry are used to characterize different degrees of surface hydrogenation, surface termination, electrical conductivity, and structural defects in the differently treated materials.
View Article and Find Full Text PDFOver the past five years a number of different synthesis approaches has been reported to obtain so-called 'black' titania. One of the outstanding features of the material is that certain synthesis processes lead to the formation of an intrinsic co-catalytic center and thus enable noble-metal free photocatalytic H -generation. In the present work, using TiO nanotube layers, we compare three common 'blackening' approaches, namely i) the original high-pressure hydrogenation (HPT-H ), ii) a classic high temperature reduction in Ar, and iii) an electrochemical (cathodic) reduction.
View Article and Find Full Text PDFThe high-pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H2 evolution that is highly effective and stable without the need for any additional co-catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble-metal-decorated TiO2). EPR and PL measurements indicated the intrinsic co-catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation.
View Article and Find Full Text PDFHere we report that TiO2 nanotube (NT) arrays, converted by a high pressure H2 treatment to anatase-like "black titania", show a high open-circuit photocatalytic hydrogen production rate without the presence of a cocatalyst. Tubes converted to black titania using classic reduction treatments (e.g.
View Article and Find Full Text PDF