Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising technology generating billions of 50 bp sequencing reads.
View Article and Find Full Text PDFAn isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency.
View Article and Find Full Text PDFBackground: Submicroscopic imbalances in the subtelomeric regions of the chromosomes are considered to play an important role in the aetiology of mental retardation (MR). The aim of the study was to evaluate a quantitative PCR (qPCR) protocol established by Boehm et al. (2004) in the clinical routine of subtelomeric testing.
View Article and Find Full Text PDFBackground: Neurofibromatosis type 1 (NF1) is a pheochromocytoma-associated syndrome. Because of the low prevalence of pheochromocytoma in NF1, we ascertained subjects by pheochromocytoma that also had NF1 in the hope of describing the germline NF1 mutational spectra of NF1-related pheochromocytoma.
Materials And Methods: An international registry for NF1-pheochromocytomas was established.
Tuberous sclerosis complex (TSC) was instrumented for identification of the gene causing autosomal dominant polycystic kidney disease type 1 (PKD1) because a patient showing both diseases gave rise to the suggestion that the TSC2 gene is located in close vicinity on chromosome 16p13. However, distinct molecular genetic characterization of such patients is sparse in the literature. A 41-year-old woman was admitted because of chylous ascites and pleural effusions.
View Article and Find Full Text PDFTelomeric chromosome rearrangements may cause mental retardation, congenital anomalies, miscarriages, and hematological malignancies. Automated detection of subtle deletions and duplications involving telomeres is essential for high-throughput screening procedures, but impractical when conventional cytogenetic methods are used. Novel real-time PCR quantitative genotyping of subtelomeric amplicons using SYBR-green dye allows high-resolution screening of single copy number gains and losses by their relative quantification against a diploid genome.
View Article and Find Full Text PDF