The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.
View Article and Find Full Text PDFOpioid use disorder - particularly involving fentanyl - has precipitated a public health crisis characterized by a significant increase in addiction and overdose-related deaths. Fentanyl-specific immunotherapy, which aims at inducing fentanyl-specific antibodies capable of binding fentanyl molecules in the bloodstream, preventing their entry in the central nervous system, is therefore gaining momentum. Conventional opioid designs rely on the covalent conjugation of fentanyl analogues to immunogenic carrier proteins that hold the inherent capacity of mounting immunodominant responses.
View Article and Find Full Text PDFCancer vaccines aim at generating cytotoxic CD8 T cells that kill cancer cells and confer durable tumor regression. Hereto, CD8 peptide epitopes should be presented by antigen presenting cells to CD8 T cells in lymphoid tissue. Unfortunately, in unformulated soluble form, peptide antigens are poorly taken up by antigen presenting cells and do not efficiently reach lymph nodes.
View Article and Find Full Text PDFSpontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by and and made by myeloid and epithelial cells respectively.
View Article and Find Full Text PDFPharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG-ODNs) are short single-stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9-dependent NF-κB signaling pathway.
View Article and Find Full Text PDFHealthy adipose tissue (AT) contains ST2+ Tregs, ILC2s, and alternatively activated macrophages that are lost in mice or humans on high caloric diet. Understanding how this form of type 2 immunity is regulated could improve treatment of obesity. The STE20 kinase Thousand And One amino acid Kinase-3 (TAOK3) has been linked to obesity in mice and humans, but its precise function is unknown.
View Article and Find Full Text PDFDendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen.
View Article and Find Full Text PDFBackground: The most common endotype of asthma is type 2-high asthma, which is sometimes driven by adaptive allergen-specific T2 lymphocytes that react to allergens presented by dendritic cells (DCs), or sometimes by an innate immune response dominated by type 2 innate lymphocytes (ILC2s). Understanding the underlying pathophysiology of asthma is essential to improve patient-tailored therapy. The STE20 kinase thousand-and-one kinase 3 (TAOK3) controls key features in the biology of DCs and lymphocytes, but to our knowledge, its potential usefulness as a target for asthma therapy has not yet been addressed.
View Article and Find Full Text PDFSmall-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration.
View Article and Find Full Text PDFPeptide-based subunit vaccines are attractive in view of personalized cancer vaccination with neo-antigens, as well as for the design of the newest generation of vaccines against infectious diseases. Key to mounting robust antigen-specific immunity is delivery of antigen to antigen-presenting (innate immune) cells in lymphoid tissue with concomitant innate immune activation to promote antigen presentation to T cells and to shape the amplitude and nature of the immune response. Nanoparticles that co-deliver both peptide antigen and molecular adjuvants are well suited for this task.
View Article and Find Full Text PDFAntigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM CD4 cDC2s in the spleen and failed to prime CD4 T cells in response to allogeneic red-blood-cell transfusion.
View Article and Find Full Text PDFThe search for vaccines that protect from severe morbidity and mortality as a result of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Several vaccine candidates are currently being tested in the clinic. Inactivated virus and recombinant protein vaccines can be safe options but may require adjuvants to induce robust immune responses efficiently.
View Article and Find Full Text PDFSynthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high TLR agonist activity.
View Article and Find Full Text PDFTriggering antibody-mediated innate immune mechanisms to kill cancer cells is an attractive therapeutic avenue. In this context, recruitment of endogenous antibodies to the cancer cell surface could be a viable alternative to the use of monoclonal antibodies. We report on antibody-recruiting polymers containing multiple antibody-binding hapten motifs and cyclooctynes that can covalently conjugate to azides introduced onto the glycocalyx of cancer cells by metabolic labeling with azido sugars.
View Article and Find Full Text PDFUncontrolled systemic inflammatory immune triggering has hampered the clinical translation of several classes of small-molecule immunomodulators, such as imidazoquinoline TLR7/8 agonists for vaccine design and cancer immunotherapy. By taking advantage of the inherent serum-protein-binding property of lipid motifs and their tendency to accumulate in lymphoid tissue, we designed amphiphilic lipid-polymer conjugates that suppress systemic inflammation but provoke potent lymph-node immune activation. This work provides a rational basis for the design of lipid-polymer amphiphiles for optimized lymphoid targeting.
View Article and Find Full Text PDFBackground: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk.
Objective: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma.
The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death.
View Article and Find Full Text PDFNaive CD4 T cells differentiate into functionally diverse T helper (Th) cell subsets. Th2 cells play a pathogenic role in asthma, yet a clear picture of their transcriptional profile is lacking. We performed single-cell RNA sequencing (scRNA-seq) of T helper cells from lymph node, lung, and airways in the house dust mite (HDM) model of allergic airway disease.
View Article and Find Full Text PDFAlthough spontaneous protein crystallization is a rare event in vivo, Charcot-Leyden crystals (CLCs) consisting of galectin-10 (Gal10) protein are frequently observed in eosinophilic diseases, such as asthma. We found that CLCs derived from patients showed crystal packing and Gal10 structure identical to those of Gal10 crystals grown in vitro. When administered to the airways, crystalline Gal10 stimulated innate and adaptive immunity and acted as a type 2 adjuvant.
View Article and Find Full Text PDFInteractive materials that can respond to a trigger by changing their morphology, but that can also gradually degrade into a fully soluble state, are attractive building blocks for the next generation of biomaterials. Herein, we design such transiently responsive polymers that exhibit UCST behaviour while gradually losing this property in response to a hydrolysis reaction in the polymer side chains. The polymers operate within a physiologically relevant window in terms of temperature, pH, and ionic strength.
View Article and Find Full Text PDFBackground: The emergence of IL-33 as a key molecular player in the development and propagation of widespread inflammatory diseases, including asthma and atopic dermatitis, has established the need for effective IL-33-neutralizing biologics.
Objective: Here we describe the development and validation of a new antagonist of IL-33, termed IL-33trap, which combines the extracellular domains of the IL-33 receptor (ST2) and its coreceptor, IL-1 receptor accessory protein, into a single fusion protein.
Methods: We produced and purified recombinant IL-33trap from human cells and analyzed its IL-33-binding affinity and IL-33 antagonistic activity in cultured cells and mice.