Purpose: The acquisition of accurate B maps is critical for parallel transmit techniques (pTx). The presaturated turboFLASH (satTFL) method has been widely used in combination with interferometric encoding to provide robust and fast B maps. However, typical encodings, mostly evaluated on brain, do not necessarily fit all coils and organs.
View Article and Find Full Text PDFIEEE Trans Med Imaging
January 2022
One of the main challenges in ultra-high field whole body MRI relates to the uniformity and efficiency of the radiofrequency field. Although recent advances in the design of RF coils have demonstrated that dipole antennas have a current distribution ideally suited to 7T MRI, they are limited by low isolation and poor robustness to loading changes. Multi-layered and self-decoupled loop coils have demonstrated improved RF performance in these areas at lower field MRI but have not been adapted to dipole designs.
View Article and Find Full Text PDFTo prevent the interferences between radiofrequency (RF) coils and other components in the magnetic resonance imaging (MRI) system such as gradient coils, it is essential to place an RF shield between the RF coils and gradient coils. However, the induced currents on conventional RF shields have negative influences on the RF coil performance. To reduce these influences, metamaterial absorbers (MA), a class of metamaterials exhibiting nearly unity absorption rate for the incident electromagnetic fields, can be employed for the design of a novel RF shield.
View Article and Find Full Text PDFPurpose: Parallel transmission techniques in MRI have the potential to improve the image quality near metal implants at 3 T. However, current testing of implants only evaluates the risk of radiofrequency (RF) heating in phantoms in circularly polarized mode. We investigate the influence of changing the transmission settings in a 2-channel body coil on the peak temperature near 2 CoCrMo hip prostheses, using adaptive specific absorption rate (SAR) as an estimate of RF heating.
View Article and Find Full Text PDFPurpose: Magnetic resonance imaging is used increasingly to scan patients with hip prostheses. We evaluated the reliability of 10 g-averaged specific absorption rate (SAR ) to predict radiofrequency (RF) heating in tissues surrounding a hip implant at 7 T in an 8-channel pTx hip coil. A new adaptive SAR mass-averaging method is proposed to improve the correlation between the distribution of mass-averaged SAR and that of tissue temperature.
View Article and Find Full Text PDFThis work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening. A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions.
View Article and Find Full Text PDFPurpose: We present the initial in vivo imaging results of an open architecture eight-channel parallel transmission (pTx) transceive radiofrequency (RF) coil array that was designed and constructed for static and dynamic 7T MRI of the knee and ankle joints.
Methods: The pTx coil has a U-shaped dual-row configuration (200 mm overall length longitudinally) that allows static and dynamic imaging of the knee and ankle joints at various postures and during active movements. This coil structure, in combination with B shimming, allows flexible configuration of B transmit profiles, with good homogeneity over 120-mm regions of interest.