Publications by authors named "Dessislava Mladenova"

The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown.

View Article and Find Full Text PDF

Microsatellite instability (MSI) is caused by DNA mismatch repair deficiency and is an important prognostic and predictive biomarker in colorectal cancer but relatively few studies have exploited mouse models in the study of its clinical utility. Furthermore, most previous studies have looked at MSI in the small intestine rather than the colon of mismatch repair deficient -knockout (KO) mice. Here we compared -KO, -KO, and wild type (WT) mice that were treated with the carcinogen azoxymethane (AOM) and the nonsteroidal anti-inflammatory drug sulindac or received no treatment.

View Article and Find Full Text PDF

Hypoxia-inducible factor 1α (HIF1α) is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies.

View Article and Find Full Text PDF

The mutated in colorectal cancer (MCC) is a multifunctional gene showing loss of expression in colorectal and liver cancers. MCC mutations can drive colon carcinogenesis in the mouse and in vitro experiments suggest that loss of MCC function promotes cancer through several important cellular pathways. In particular, the MCC protein is known to regulate beta-catenin (β-cat) signaling, but the mechanism is poorly understood.

View Article and Find Full Text PDF

Background: The non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa.

View Article and Find Full Text PDF

The association between chronic inflammation and cancer has been noted for at least a century but the exact molecular mechanisms of cancer initiation and promotion by such inflammation are still poorly understood. The gastrointestinal tract is a unique organ where maintaining a balance between the colonic epithelial cells, the immune system and a fine-tuned response to the resident microflora is crucial for preserving the gut homeostasis. A breakdown of the tight interdependent regulation of the epithelium-immunity-microbiota triangle leads to inflammatory bowel disorders and may promote cancer.

View Article and Find Full Text PDF

MCC is a potential tumor suppressor gene, which is silenced by promoter hypermethylation in a subset of colorectal cancers. However, its functions have remained poorly understood. In the present study, we describe a novel function of MCC in the DNA damage response.

View Article and Find Full Text PDF

Introduction: Lung cancer is the leading cause of cancer-related mortality and requires more effective molecular markers of prognosis and therapeutic responsiveness. Special AT-rich binding protein 1 (SATB1) is a global genome organizer that recruits chromatin remodeling proteins to epigenetically regulate hundreds of genes in a tissue-specific manner. Initial studies suggest that SATB1 overexpression is a predictor of poor prognosis in breast cancer, but the prognostic significance of SATB1 expression has not been evaluated in lung cancer.

View Article and Find Full Text PDF

Background And Aims: The non-steroidal anti-inflammatory drug sulindac is an effective chemopreventive agent in sporadic colorectal cancer but its potential benefit in mismatch repair deficient cancers remains to be defined. We wanted to determine whether genetic defects that are relevant for colorectal cancer, such as Msh2 or p53 deficiency, would influence the efficiency of sulindac chemoprevention or increase the side effects.

Methods: Msh2 or p53 deficient and wild-type mice received feed containing 160-320 ppm sulindac for up to 25 weeks with or without a concurrent treatment with the carcinogen azoxymethane.

View Article and Find Full Text PDF