E2F and RB proteins regulate the expression of genes involved in cell cycle progression, apoptosis, differentiation, and development. Recent studies indicate that they function as part of an evolutionarily conserved multiprotein complex termed dREAM/DREAM/LINC. Here we characterize the role of the Drosophila complex, dREAM, in the regulation of differentiation-specific E2F target genes in actively proliferating cells.
View Article and Find Full Text PDFThe histone genes are an important group of cell cycle regulated genes whose transcription is activated during the G1/S transition and repressed in early G1, late S, and G2/M. The HIR complex, comprised of Hir1, Hir2, Hir3 and Hpc2, regulates three of the four histone gene loci. While relief of repression at the G1/S boundary involves the HIR complex, as well as other cofactors, the mechanism by which this derepression occurs remains unknown.
View Article and Find Full Text PDFInactivation of the retinoblastoma protein (pRB) is a hallmark of human cancer. Accordingly the RB pathway has been extensively studied in mammals, flies and worms, but mostly in the context of cell cycle entry. The means by which RB proteins regulate differentiation and the transcription of genes involved in differentiation and development is less well understood.
View Article and Find Full Text PDFThe RB and E2F proteins play important roles in the regulation of cell division, cell death, and development by controlling the expression of genes involved in these processes. The mechanisms of repression by the retinoblastoma protein (pRB) have been extensively studied at cell cycle-regulated promoters. However, little is known about developmentally regulated E2F/RB genes.
View Article and Find Full Text PDFMost human cancers involve either mutational activation of the Ras oncogenic pathway and/or inactivation of the retinoblastoma tumor suppressor (RB) pathway. Paradoxically, tumors that harbor Ras mutations almost invariably retain expression of a wild-type pRB protein. We explain this phenomenon by demonstrating that Ras-induced oncogenic transformation surprisingly depends on functional pRB protein.
View Article and Find Full Text PDFE2F transcription factors are generally believed to be positive regulators of apoptosis. In this study, we show that dE2F1 and dDP are important for the normal pattern of DNA damage-induced apoptosis in Drosophila wing discs. Unexpectedly, the role that E2F plays varies depending on the position of the cells within the disc.
View Article and Find Full Text PDFIn higher eukaryotes, the Retinoblastoma and E2F families of proteins control the transcription of a large number of target genes. Here, we have mutated the second Drosophila Retinoblastoma family gene (Rbf2), and contrasted the in vivo molecular functions of RBF2 with dE2F2, the only E2F partner of RBF2. Previous studies failed to uncover a unique role for RBF2 in E2F regulation.
View Article and Find Full Text PDFTo determine which E2F/RB-family members are functionally important at E2F-dependent promoters, we used RNA interference (RNAi) to selectively remove each component of the dE2F/dDP/RBF pathway, and we examined the genome-wide changes in gene expression that occur when each element is missing. The results reveal a remarkable division of labor between family members. Classic E2F targets, encoding functions needed for cell cycle progression, are expressed in cycling cells and are primarily dependent on dE2F1and RBF1 for regulation.
View Article and Find Full Text PDFHere we show that the cell cycle defects of dE2F1-depleted cells depend on the cooperative effects of dE2F2 and DACAPO (DAP), an inhibitor of Cyclin E/cyclin-dependent kinase 2 (CycE/cdk2). The different properties of cells lacking dE2F1/dE2F2 and dE2F1/DAP lead to the surprising observation that dE2F2-mediated repression differs from retinoblastoma family protein 1 (RBF1) inhibition of dE2F1, and is resistant to both CycE/cdk2 and Cyclin D/cyclin-dependent kinase 4 (CycD/cdk4). This resistance occurs even though dE2F2/RBF1 complexes are disrupted by CycE/cdk2, and may explain why dE2F2 is so potent in the absence of de2f1.
View Article and Find Full Text PDFRBF1, a Drosophila pRB family homolog, is required for cell cycle arrest and the regulation of E2F-dependent transcription. Here, we describe the properties of RBF2, a second family member. RBF2 represses E2F transcription and is present at E2F-regulated promoters.
View Article and Find Full Text PDF