Adipose tissue is an organ with metabolic, endocrine and immune functions. In this tissue, the expressions of genes associated with several metabolic pathways, including lipid metabolism, have been shown to be affected by genetic selection for feed efficiency, an important trait to consider in livestock. We hypothesized that the stimulation of immune system caused by poor hygiene conditions of housing impacts the molecular and cellular features of adipose tissue and that the impact may differ between pigs that diverge in feed efficiency.
View Article and Find Full Text PDFThe ability of pigs to cope with inflammatory challenges may by modified by selection for residual feed intake (RFI), a measure of feed efficiency. In the current study, we evaluated skeletal muscle metabolic responses to degraded hygiene conditions in pigs divergently selected for RFI. At 82 d of age, low RFI and high RFI pigs were housed in either poor or good hygiene conditions.
View Article and Find Full Text PDFSevere sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation.
View Article and Find Full Text PDFIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D "tissues" called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals.
View Article and Find Full Text PDFTypical two-dimensional (2D) culture models of skeletal muscle-derived cells cannot fully recapitulate the organization and function of living muscle tissues, restricting their usefulness in in-depth physiological studies. The development of functional 3D culture models offers a major opportunity to mimic the living tissues and to model muscle diseases. In this respect, this new type of in vitro model significantly increases our understanding of the involvement of the different cell types present in the formation of skeletal muscle and their interactions, as well as the modalities of response of a pathological muscle to new therapies.
View Article and Find Full Text PDFPurpose: The control of body composition by genetics and dietary nutrients is of the upmost importance for both human and animal physiology. Adult stem cells (aSC) may represent a relevant level of tissue adaptation. The purpose of this study was to determine the impact of macronutrient composition on aSC populations isolated from adipose tissue or muscle in growing pigs.
View Article and Find Full Text PDFAutophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in species of agronomical interest, and the details of how autophagy functions in the development of phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description of the main mechanisms involved in autophagy, then review our current knowledge regarding autophagy in species of agronomical interest, with particular attention to physiological functions supporting livestock animal production, and finally assess the potential of translating the acquired knowledge to improve animal development, growth and health in the context of growing social, economic and environmental challenges for agriculture.
View Article and Find Full Text PDFThe mouse transplantation model remains the most relevant methodology to assess the functional capacities of mammary cells and is particularly appropriate for investigations regarding mammary stem cells, whatever the species studied. Following xenotransplantation in mice mammary fat pad, the development of the xenograft is commonly evaluated by immunohistology. Here, we present a simple and rapid method to control the species specificity of a xenograft based on genomic DNA PCR amplification.
View Article and Find Full Text PDFThe experiment reported in this research communication aimed to determine the effects of post-weaning feeding level after early weaning on mammary parenchyma development in Alpine goats. Thirty Alpine female goat kids were weaned early (at around 9.8 kg and 32 d of age) and fed different levels of concentrate: Control (C, 730 g DM/d, n = 10), Low (L, 365 g DM/d, n = 10) or High (H, 1090 g DM/d, n = 10) until 235 d of age with ad libitum hay and water.
View Article and Find Full Text PDFThe mammary tissue is characterized by its capacity to adapt in response to a wide variety of changing conditions. This adaptation capacity is referred to as the plasticity of mammary tissue. In dairy ruminants, lactation is challenged by modifications that can either be induced on purpose, such as by modifying management practices, or occur involuntarily, when adverse environmental constraints arise.
View Article and Find Full Text PDFBackground: High-yielding dairy cows are prone to oxidative stress due to the high metabolic needs of homeostasis and milk production. Oxidative stress and inflammation are tightly linked; therefore, anti-inflammatory and/or natural antioxidant compounds may help improve mammary cell health. Baicalin, one of the major flavonoids in , has natural antioxidant and anti-inflammatory properties in various cell types, but its effects on bovine mammary epithelial cells (BMECs) have not been investigated.
View Article and Find Full Text PDFMilk production is highly dependent on the optimal development of the mammary epithelium. It is therefore essential to better understand mammary epithelial cell growth and maintenance from the related epithelial lineage during the animal life. Here, we characterized the epithelial lineage at puberty, lactation and dry-off in bovine using the cell surface markers CD49, CD24, and CD10.
View Article and Find Full Text PDFMilk production is highly dependent on the extensive development of the mammary epithelium, which occurs during puberty. It is therefore essential to distinguish the epithelial cells committed to development from the related epithelial hierarchy. Using cell phenotyping and sorting, we highlighted four cell sub-populations within the bovine mammary gland at puberty.
View Article and Find Full Text PDFThe experiment reported in this Research Communication aimed to determine the combined effects of early weaning and post-weaning feeding level on growth, reproductive parameters and milk yield in Alpine goats. Sixty-four Alpine goat kids were weaned abruptly at either 12·2 (±1·40) kg (40 d of age, E) or 17·7 (±2·30) kg (60 d of age, No). After weaning, E and No goats were subjected to 2 feeding strategies (n = 16): ad libitum concentrate until 130 d of age and then 620 g DM/d/goat until 200 d of age (EC and NoC) or ad libitum concentrate until 200 d of age (EAL and NoAL).
View Article and Find Full Text PDFEn masse secretion of milk proteins, notably the caseins in the form of casein micelles, is a unique feature of the milk-secreting mammary epithelial cell. Caseins are therefore specific markers of these cells and constitute an ideal tool to monitor their differentiation, as well as functional status, during the development of the gland. To use them as such, a reliable method for quantitative analysis of the caseins from mammary cells or tissue is needed.
View Article and Find Full Text PDFThe plasticity of the mammary gland relies on adult mammary stem cells (MaSCs) and their progenitors, which give rise to various populations of mammary epithelial cells (MECs). To face global challenges, an in-depth characterization of milk-producing animal mammary gland plasticity is required, to select more sustainable and robust dairy cows. The identification and characterization of MaSC and their progenitors will also provide innovative tools in veterinary/human medicine regarding mammary tissue damage (carcinogenesis, bacterial infections).
View Article and Find Full Text PDFDairy cattle require a dry period between successive lactations to ensure optimal milk production. Because prolactin (PRL) is necessary for the initiation and maintenance of milk production, strategies that can inhibit PRL secretion might hasten the involution process. The objective of this study was to determine the effect of the PRL release inhibitor cabergoline on markers of mammary gland involution during the early dry period.
View Article and Find Full Text PDFThe role of the recently described interleukin-32 (IL-32) in Staphylococcus aureus-induced mastitis, an inflammation of the mammary gland, is unclear. We determined expression of IL-32, IL-6, and IL-8 in S. aureus- and Escherichia coli-infected bovine mammary gland epithelial cells.
View Article and Find Full Text PDFImmortalized bovine mammary epithelial cells (BME-UV1) and immortalized bovine mammary alveolar cells (MAC-T) have been extensively used as in vitro cell models to understand milk production in dairy cows. Precise knowledge about their phenotype and performance remains, however, unknown. This study aims to characterize MAC-T and BME-UV1 profiles when cultured in two-dimensional adherent, three-dimensional adherent (Matrigel), and three-dimensional no adherent [ultralow attachment (ULA)] supports.
View Article and Find Full Text PDFThe mammary gland is a dynamic organ that undergoes cyclic developmental and regressive changes during the lifetime of a female mammal. Mammogenesis begins during embryonic life with the development of the first mammary gland rudiments and ductal system. After birth, during the pre-pubertal period, the ductal growth of the mammary parenchyma occurs through the fat pad.
View Article and Find Full Text PDFIn dairy animals, the milk yield (MY) changes during a lactation and is influenced by several physiological, livestock management and environmental factors. The MY produced by a mammary gland depends on synthetic activity of mammary epithelial cells (MECs) as well as MEC number and mammary secretory tissue organization. It has been suggested that ovarian steroids (estradiol and progesterone) have a negative effect on MY in lactating cows.
View Article and Find Full Text PDFA current trend in the dairy industry is to reduce milk yield at the peak of lactation and improve lactation persistency. Lactation persistency is influenced by livestock management factors, such as feeding level or milking frequency, or by physiological status, including reproductive status or calving period. These factors modulate mammary gland apoptosis and tissue remodeling, which determine the rate of decline of milk yield after the lactation peak.
View Article and Find Full Text PDFThe objective of this study was to provide insight into the biological mechanisms underlying mammary development and the role of the ovaries in prepubertal caprine mammogenesis using a serial ovariectomy approach. Young Alpine goats were ovariectomized (Ovx) or sham-operated (Int) at three periods before puberty (G1=1 month, G2=2 month and G3=3 months of age) and one after puberty (G7=7 months of age). The goats were slaughtered at 9 months of age and mammary glands were removed.
View Article and Find Full Text PDFDomest Anim Endocrinol
August 2012
In most mammals, prolactin (PRL) is essential for maintaining lactation and its suppression strongly inhibits lactation. However, the involvement of PRL in the control of ruminant lactation is less clear because inconsistent effects on milk yield have been observed with short-term suppression of PRL by bromocriptine. By contrast, in vitro studies have provided evidence that PRL helps to maintain the differentiation state and act as a survival factor for mammary epithelial cells.
View Article and Find Full Text PDF