Publications by authors named "Despotopulos J"

Article Synopsis
  • - The experiment at Lawrence Berkeley National Laboratory aimed to produce a superheavy element with an atomic number of 114 or greater by bombarding an actinide target with a ^{50}Ti beam.
  • - Using the Berkeley Gas-filled Separator, researchers successfully isolated and implanted produced Livermorium (Lv) ions into a high-tech detector system, observing two decay chains linked to ^{290}Lv.
  • - The measured production cross-section of the process was 0.44 picobarns at a specific energy, marking the first published evidence of superheavy element production near the "island of stability" with this method, paving the way for future discoveries beyond element Z=118.
View Article and Find Full Text PDF

Advanced used nuclear fuel (UNF) reprocessing strategies are limited by the complex radiochemical separations and engineering required to achieve the separation of actinides (An) from neutron scavenging lanthanides (Ln). The accessibility of the hexavalent oxidation state for the actinides (U - Am) provides a pathway to achieving a group hexavalent actinide separation from the trivalent lanthanides and Cm. The solid oxidant and ion exchanger, sodium bismuthate (NaBiO), has been demonstrated to quantitatively oxidize and separate Am from trivalent Cm in a column chromatographic system.

View Article and Find Full Text PDF

Since the National Ignition Facility (NIF) was commissioned in 2009, radiochemical techniques have been viewed as a potential method for diagnosing the performance of an NIF fusion shot. Radiochemical methods can also be used in conjunction with NIF shots to measure nuclear reaction cross sections in regimes that are inaccessible at accelerator facilities and can provide a route to produce radioactive tracer materials that can be used for other applications. This review presents the current status of radiochemical diagnostics at the NIF.

View Article and Find Full Text PDF

Tungsten is a commonly used material at many heavy-ion beam facilities, and it often becomes activated due to interactions with a beam. Many of the activation products are useful in basic and applied sciences if they can be recovered efficiently. In order to develop the radiochemistry for harvesting group (IV) elements from irradiated tungsten, a heavy-ion beam containing Zr was embedded into a stack of tungsten foils at the National Superconducting Cyclotron Laboratory and a separation methodology was devised to recover the Zr.

View Article and Find Full Text PDF

During routine operation of the Facility for Rare Isotope Beams (FRIB), radionuclides will accumulate in both the aqueous beam dump and along the beamline in the process of beam purification. These byproduct radionuclides, many of which are far from stability, can be collected and purified for use in other scientific applications in a process called isotope harvesting. In this work, the viability of Zr harvesting from solid components was investigated at the National Superconducting Cyclotron Laboratory.

View Article and Find Full Text PDF

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character.

View Article and Find Full Text PDF

The unsaturated hexathia-18-crown-6 (UHT18C6) molecule was investigated for the extraction of Hg(II) in HCl and HNO media. This extractant can be directly compared to the recently studied saturated hexathia-18-crown-6 (HT18C6). The default conformation of the S lone pairs in UHT18C6 is endodentate, where the pocket of the charge density, according to the crystal structures, is oriented toward the center of the ring, which should allow better extraction for Hg(II) compared to the exodentate HT18C6.

View Article and Find Full Text PDF

The on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi-[Formula: see text] photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around [Formula: see text], the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration.

View Article and Find Full Text PDF

Nuclear fusion experiments performed at the National Ignition Facility produce radioactive debris, arising in reactions of fast neutrons with the target assembly. We have found that postshot debris collections are fractionated, such that isotope ratios in an individual debris sample may not be representative of the radionuclide inventory produced by the experiment. We discuss the potential sources of this fractionation and apply isotope-correlation techniques to calculate unfractionated isotope ratios that are used in measurements of nuclear reaction cross sections.

View Article and Find Full Text PDF

A large area solid radiochemistry collector was deployed at the National Ignition Facility (NIF) with a collection efficiency for post-shot, solid target debris of approximately 1% of the total 4π solid angle. The collector consisted of a 20-cm diameter vanadium foil surrounded by an aluminum side-enclosure and was fielded 50 cm from the NIF target. The collector was used on two NIF neutron yield shots, both of which had a monolayer of U embedded in the capsule ablator 10 m from the inner surface.

View Article and Find Full Text PDF

The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

View Article and Find Full Text PDF

A high-purity carrier-free (7)Be was efficiently isolated following proton bombardment of a lithium hydroxide-aluminum target. The separation of beryllium from lithium and aluminum was achieved through a hydrochloric acid elution system utilizing cation exchange chromatography. The beryllium recovery, +99%, was assessed through gamma spectroscopy while the chemical purity was established by mass spectrometry.

View Article and Find Full Text PDF

We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time.

View Article and Find Full Text PDF