WD40 repeat proteins (WDRs) are present in all eukaryotes and include members that are implicated in numerous cellular activities. They act as scaffold proteins and thus as molecular "hubs" for protein-protein interactions, which mediate the assembly of multifunctional complexes that regulate key developmental processes in , such as flowering time, hormonal signaling, and stress responses. Despite their importance, many aspects of their putative functions have not been elucidated yet.
View Article and Find Full Text PDFCircuitries of signaling pathways integrate distinct hormonal and environmental signals, and influence development in plants. While a crosstalk between brassinosteroid (BR) and gibberellin (GA) signaling pathways has recently been established, little is known about other components engaged in the integration of the two pathways. Here, we provide supporting evidence for the role of HSP90 (HEAT SHOCK PROTEIN 90) in regulating the interplay of the GA and BR signaling pathways to control hypocotyl elongation of etiolated seedlings in Arabidopsis.
View Article and Find Full Text PDFThe activation of BRASSINOSTEROID INSENSITIVE1 (BRI1) and its association with the BRI1 ASSOCIATED RECEPTOR KINASE1 (BAK1) are key steps for the initiation of the BR signaling cascade mediating hypocotyl elongation. Heat shock protein 90 (HSP90) is crucial in the regulation of signaling processes and the activation of hormonal receptors. We report that HSP90 is required for the maintenance of the BRI1 receptor at the plasma membrane (PM) and its association with the BAK1 co-receptor during BL-ligand stimulation.
View Article and Find Full Text PDFThe YODA (YDA) kinase pathway is intimately associated with the control of Arabidopsis (Arabidopsis thaliana) embryo development, but little is known regarding its regulators. Using genetic analysis, HEAT SHOCK PROTEIN 90 (HSP90) proteins emerge as potent regulators of YDA in the process of embryo development and patterning. This study is focused on the characterization and quantification of early embryonal traits of single and double hsp90 and yda mutants.
View Article and Find Full Text PDFPlant Signal Behav
September 2020
Stomatal development is tightly connected with the overall plant growth, while changes in environmental conditions, like elevated temperature, affect negatively stomatal formation. Stomatal ontogenesis follows a well-defined series of cell developmental transitions in the cotyledon and leaf epidermis that finally lead to the production of mature stomata. YODA signaling cascade regulates stomatal development mainly through the phosphorylation and inactivation of SPEECHLESS (SPCH) transcription factor, while HSP90 chaperones have a central role in the regulation of YODA cascade.
View Article and Find Full Text PDFPattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast.
View Article and Find Full Text PDFHEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity.
View Article and Find Full Text PDFStomatal ontogenesis, patterning, and function are hallmarks of environmental plant adaptation, especially to conditions limiting plant growth, such as elevated temperatures and reduced water availability. The specification and distribution of a stomatal cell lineage and its terminal differentiation into guard cells require a master regulatory protein phosphorylation cascade involving the YODA mitogen-activated protein kinase kinase kinase. YODA signaling results in the activation of MITOGEN-ACTIVATED PROTEIN KINASEs (MPK3 and MPK6), which regulate transcription factors, including SPEECHLESS (SPCH).
View Article and Find Full Text PDFKatanin is the only microtubule severing protein identified in plants so far. Previous studies have documented its role in regulating cortical microtubule organization during cell growth and morphogenesis. Although, some cell division defects are reported in mutants, it is not clear whether or how katanin activity may affect microtubule dynamics in interphase cells, as well as the progression of mitosis and cytokinesis and the orientation of cell division plane (CDP).
View Article and Find Full Text PDFCytoskeletal remodeling has a fundamental role, especially during transitional developmental stages when cells rapidly adopt new forms and roles, like gametogenesis, fertilization and concomitant embryogenesis and seed formation. KATANIN 1, a microtubule severing protein, fulfills a major regulatory mechanism of dynamic microtubule turnover in eukaryotes. Herein, we show that three well-established mutants, and collectively display lower fertility and seed set in Arabidopsis.
View Article and Find Full Text PDFHeat shock protein 90 (HSP90) controls a number of developmental circuits, and serves a sophisticated and highly regulatory function in signaling pathways. Brassinosteroids (BRs) control many aspects of plant development. Genetic, physiological, cytological, gene expression, live cell imaging, and pharmacological approaches provide conclusive evidence for HSP90 involvement in Arabidopsis thalianaBR signaling.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone. In Arabidopsis, the Hsp90 gene family consists of seven members. Here, we report that the AtHsp90-6 gene gives rise to two mRNA populations, termed AtHsp90-6L and AtHsp90-6S due to alternative initiation of transcription.
View Article and Find Full Text PDFStochastic processes are intrinsic phenomena that perturb developmental processes. However, the canalization process restricts the magnitude of perturbation and hence the magnitude of morphological variation during development. Heat-shock protein 90 (Hsp90) chaperones are a class of proteins stabilizing a network of 'client' proteins that are involved in diverse signal transduction pathways affecting development.
View Article and Find Full Text PDFThe spatial and temporal distribution of expression of two cytosolic members of the AtHsp90 gene family was assessed during early development. In stressed transgenic plants bearing the AtHsp90-3 promoter, beta-glucuronidase (GUS) activity was strong in meristematic tissues. Expression was also detected in vascular tissues, leaf veins, siliques, and in pollen sacs.
View Article and Find Full Text PDF