Publications by authors named "Desouky Abd el-Haleem"

This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate.

View Article and Find Full Text PDF

The objective of this study was to identify genes associated with the biodegradation of phenol by Acinetobacter sp. strain DF4 through the use of differential display (DD) methodology. The bacteria were grown in YEPG medium, and total RNA was extracted and analyzed using labeled primers to detect gene expression differences.

View Article and Find Full Text PDF

The Lythraceae family includes henna (), which thrives in subtropical and tropical climates. One of its many and long-standing uses is in cosmetics as a pigment to color hair and nails. Additionally, it serves as a disinfectant against microbiological infections and has traditional applications in the textile industry, specifically for coloring wool and nylon.

View Article and Find Full Text PDF

This study identified an extracellular bacterial polysaccharide produced by Bacillus velezensis strain 40B that contains more than 90% of the monosaccharide glucose as alpha-glucan. A prominent peak at 1074 cm, a characteristic of glycoside couplings, was visible in the FTIR spectrum. There were traces of xylose, sucrose, and lactose, according to the HPLC study.

View Article and Find Full Text PDF

Bacterial polymeric silk is produced by sp. strain NE and is composed of two proteins, called fibroin and sericin, with several biomedical and biotechnological applications. In the current study and for the first time, the whole bacterial silk proteins were found capable of exerting antiviral effects against herpes simplex virus type-1 (HSV-1), adenovirus type 7 (AD7), and hepatitis C virus (HCV).

View Article and Find Full Text PDF

The quest for eco-friendly and biocompatible nanoparticles (NPs) is an urgent issue in the agenda of the scientific community and applied technology, which compressing synthesis routes. For the first time, a simple route for the biosynthesis of functionalized CuFe-hybrid nanocomposites (FCFNCs) was achieved using Streptomyces cyaneofuscatus through a simultaneous bioreduction strategy of Cu and Fe salts. The suitability of FCFNCs was evaluated medically and environmentally as an anticancer agent, antimicrobial agent and dye bio-sorbent.

View Article and Find Full Text PDF

The nonbiodegradability nature of heavy metals renders them resident in food chain and subsequently, destructing the entire ecosystem. Therefore, this study aimed to employ nitrate reduction-driven calcium carbonate precipitation in remediation of lead and mercury aerobically and anaerobically by Proteus mirabilis 10B, for the first time. Initially, Plackett-Burman design was employed to screen of 16 independent variables for their significances on periplasmic (NAP) and membrane-bound (NAR) nitrate reductases.

View Article and Find Full Text PDF

Sericin is one of the main components of silk proteins, which has numerous biomedical applications because of its antioxidant, anticancer and antimicrobial properties. We recently isolated and characterized a novel silk-like protein named BNES. It is of non-animal origin and is like a bacterial polymeric silk.

View Article and Find Full Text PDF

Disinfection of water and wastewater strongly contributes to solving the problem of water shortage in arid/semi-arid areas; cheap and ecofriendly approaches have to be used to meet water quality standards. In the present study, a green synthesis of iron nanoparticles (INPs) under aerobic and anaerobic conditions via nitrate reductases (NAP/NAR) enzymes produced by Proteus mirabilis strain 10B were employed for this target. The biosynthesized INPs were characterized; UV-Vis spectroscopy revealed surface plasmon resonance at 410 (aerobic) and 265 nm (anaerobic).

View Article and Find Full Text PDF

Among others, isolate PSK1 was selected and identified by 16 S rDNA sequencing as . Growth optimization of PSK1 and physicochemical parameters affected bioflocculant production was carried out by Plackett-Burman design and resulted in increasing in the activity by 4.5%.

View Article and Find Full Text PDF

The periplasmic nitrate reductase enzyme (NAP) has become attractive catalyst, whose exploitation has emerged as one of the indispensable strategies toward environmentally benign applications. To achieve them efficiently and overcome the sensitivity of NAP in harsh environmental circumstances, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was studied. NAP catalyzed NO reduction at V of 0.

View Article and Find Full Text PDF

In this study, a bioflocculant with a high flocculation activity (> 98%) produced by strain 40B, which was isolated from a brackish water was investigated By 16S rDNA sequence analysis, strain 40B was identified as Bacillus velezensis. Chemical analysis of the bioflocculant 40B indicated that it contained 2% protein and 98% carbohydrates. FTIR analysis showed the presence of carboxyl, hydroxyl and amino groups, which were preferred for the flocculation process.

View Article and Find Full Text PDF

Bacillus mojavensis strain 32A that exhibited 96.11% flocculation efficiency for clay suspensions was selected from other 15 comparative strains. Under growth condition, strain 32A was able to produce 5.

View Article and Find Full Text PDF

Biosynthesis of biodegradable polymers polyhydroxyalkanotes (PHAs) have been studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHAs in wild type yeasts is not well documented. The purpose of this study was to screen yeast isolates collected from different ecosystems for their ability to accumulate PHAs. Identification of the isolates and characterization of PHAs produced by the positive isolates were investigated.

View Article and Find Full Text PDF

Compared with conventional synthetic flocculants, bioflocculants has special advantages such as safety, strong effect, biodegradable and harmlessness to humans and the environment, so they may potentially be applied in drinking and wastewater treatment, downstream processing, and fermentation processes. To utilize bioflocculants widely in industrial fields, it is desirable to find various microorganisms with high bioflocculant-producing ability and improve the flocculating efficiency of the bioflocculant. In the present study, screening of new flocculant-producing microorganisms was carried out using samples collected from different Qatari ecosystems.

View Article and Find Full Text PDF

In the present study, we have constructed a bioluminescent bioreporter for the assessment of nitrate/nitrite bioavailability in wastewater. Specifically, an approximately 500-bp DNA fragment containing a nitrate/nitrite-activated nasR-like promoter (regulating expression of genes encoding nitrite reductase in the genus Klebsiella) was fused upstream of the Vibrio fischeri luxCDABE gene cassette in a modified mini-Tn5 vector. Characterization of this strain, designated W6-1, yielded dose-dependent increased bioluminescence coincident with increased nitrate, nitrite, and ammonium added to the growth medium from 1 to 11 ppm.

View Article and Find Full Text PDF

This work was conducted to employ a whole cell-based biosensor to monitor toxicity of heavy metals in water and wastewater. An isolate of industrial wastewater bacterium, Acinetobacter sp. DF4, was genetically modified with lux reporter gene to create a novel bioluminescent bacterial strain, designated as DF4/PUTK2.

View Article and Find Full Text PDF

In this work, the constructed bioluminescent Acinetobacter strain DF4/PUTK2 was employed to assess the toxicity of phenolic compounds and the 5 min EC50 values were calculated. The results of the DF4/PUTK2 assay were further evaluated by comparing with the results of the Vibrio fischeri luminescence inhibition assay. To develop a bioassay system appropriate to be used in continuous toxicity testing, strain DF4/PUTK2 was subjected for immobilization in microtiter plates into the matrices Ca-alginate, polyacrylamide, agar and agarose.

View Article and Find Full Text PDF

Out of 23 symptomatic cases 21 specimens were positive for T. vaginalis by one or more methods. 21 were positive by PCR (91.

View Article and Find Full Text PDF

In this work we developed and optimized two molecular-based approaches to monitor rapidly, sensitively and specifically bacterial pathogens from three different genera, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp., directly in waters. To achieve this aim, firstly a multiplex-PCR assay (M-PCR) was optimized using a primer pair specific for each pathogen.

View Article and Find Full Text PDF

The restriction fragment length polymorphism (PCR-RFLP) of 18S rDNA amplified fragments, was conducted to recognize between an unidentified Leishmania isolated from Egyptian patient infected in Saudi Arabia and two L. major reference strains causing cutaneous lesions. The strains were maintained both in vivo & in vitro.

View Article and Find Full Text PDF

Long PCR was used to amplify a 5-kb fragment of the bacterial ribosomal operon (16S-intergenic spacer region (ISR)-23S) from several Ralstonia eutropha strains (16S rDNA sequence similarity: 97-99%). Due to the large product size, amplicons from the different strains could be distinguished using restriction enzyme fragment length polymorphisms (RFLP) and repetitive PCR analysis (Rep-PCR) with the primer 1492r. These methods may prove useful in differentiating other bacterial strains with highly similar 16S rDNA sequences.

View Article and Find Full Text PDF