Introduction: Exercise and heat stress lead to systemic improvements in arterial endothelial function, vascular stiffness, and cardiopulmonary capacity. The improvements in endothelial function may be primarily mediated via increases in shear stress. This study examined whether improvements in arterial function may be achieved in the absence of systemic vascular adaptations.
View Article and Find Full Text PDFEur J Appl Physiol
December 2017
Purpose: Previous studies suggest that exercise and heat stress improve cutaneous endothelial function, caused by increases in shear stress. However, as vasodilatation in the skin is primarily a thermogenic phenomenon, we investigated if shear stress alone without increases in skin temperature that occur with exercise and heat stress increases endothelial function. We examined the hypothesis that repeated bouts of brief occlusion would improve cutaneous endothelial function via shear stress-dependent mechanisms.
View Article and Find Full Text PDFBackground: Acute exercise performance can be limited by arterial hypoxemia, such that hyperoxia may be an ergogenic aid by increasing tissue oxygen availability. Hyperoxia during a single bout of exercise performance has been examined using many test modalities, including time trials (TTs), time to exhaustion (TTE), graded exercise tests (GXTs), and dynamic muscle function tests. Hyperoxia has also been used as a long-term training stimulus or a recovery intervention between bouts of exercise.
View Article and Find Full Text PDF