Publications by authors named "Desmond F Lawler"

Point-of-use treatment technologies can increase access to safe drinking water in rural areas. Sustained use of these technologies is uncommon due to oversight of community needs, user-perceived risks, long-term maintenance, and conflict with traditional practices. Nanosilver-enabled ceramic water filters are unique due to the use of locally sourced materials available at or near the target community; however, technical limitations persist (e.

View Article and Find Full Text PDF

Opportunistic pathogens (OPs) are of concern in drinking water distribution systems because they persist despite disinfectant residuals. While many OPs garner protection from disinfectants via a biofilm lifestyle, () also gains disinfection resistance by being harbored within free-living amoebae (FLA). It has been long established, but poorly understood, that grown within FLA show increased infectivity toward subsequent FLA or human cells (i.

View Article and Find Full Text PDF

The along the United States-Mexico border are generally self-built neighborhoods of low-income families that lack basic infrastructure. While some government assistance has provided roads and electricity, water and wastewater services are still lacking in many . This research is the first to collect a comprehensive dataset on water, sanitation, health, and living conditions in these unincorporated neighborhoods through collection of water samples and surveys; 114 households in 23 across three geographically diverse Texas counties are studied.

View Article and Find Full Text PDF

Treatment of nontraditional source waters (e.g., produced water, municipal and industrial wastewaters, agricultural runoff) offers exciting opportunities to expand water and energy resources via water reuse and resource recovery.

View Article and Find Full Text PDF

Many of the six million residents of unincorporated communities in the United States depend on well-water to meet their needs. One group of unincorporated communities is the colonias, located primarily in several southwestern U.S.

View Article and Find Full Text PDF

Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.

View Article and Find Full Text PDF

Laccases were studied for their ability to remove two compounds, 2-chlorophenol and sulfamethoxazole, in batch studies, both in buffered solutions and in wastewater samples from different points in a municipal water resource recovery facility. Two enzymes with and without a mediator (acetosyringone) were investigated: a commercial product derived from Myceliphthora thermophile and a laboratory-generated enzyme mix derived from Tramates versicolor. The chlorophenol was removed rapidly by the commercial enzyme in the presence of acetosyringone, but the primary products were coupling complexes of the reactants.

View Article and Find Full Text PDF

The detection of pharmaceuticals in water and wastewater has triggered human and ecological health concerns. As highly toxic compounds, chemotherapy agents (CAs), such as the cyclophosphamide (CYP) and ifosfamide (IFO) structural isomers, represent a unique threat. This research elucidated the fate of CYP and IFO during ozonation and advanced oxidation by hydroxyl radicals (HO).

View Article and Find Full Text PDF

Compromised water quality risks public health, which becomes particularly acute in economically marginalized communities. Although the majority of the clean-water-deprived population resides in Sub-Saharan Africa and Asia, a significant portion (32 million) lives in Meso- and Latin-America. Oaxaca is one of the marginalized southern states of Mexico, which has experienced high morbidity from infectious diseases and also has suffered from a high rate of infant mortality.

View Article and Find Full Text PDF

This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal.

View Article and Find Full Text PDF

In adoption decisions for decentralized sanitation technologies, two decision makers are involved: the public utility and the individual homeowner. Standard life cycle cost is calculated from the perspective of the utility, which uses a market-based discount rate in these calculations. However, both decision-makers must be considered, including their differing perceptions of the time trade-offs inherent in a stream of costs and benefits.

View Article and Find Full Text PDF

This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential).

View Article and Find Full Text PDF

The understanding of nano-sized particle separation processes has been limited by difficulties of nanoparticle characterization. In this study, nanoparticle tracking analysis (NTA) was deployed to evaluate the absolute particle size distributions in laboratory scale flocculation and filtration experiments with silver nanoparticles. The results from NTA were consistent with standard theories of particle destabilization and transport.

View Article and Find Full Text PDF

In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes.

View Article and Find Full Text PDF

The influence of hydraulic loads on the detachment of particles from the collector surface or from previously retained particles was observed in a packed glass beads column. A hydraulic shock load (i.e.

View Article and Find Full Text PDF

Pharmaceuticals and personal care products (PPCPs) are now routinely detected in raw and treated municipal wastewater. Since conventional wastewater treatment processes are not particularly effective for PPCP removal, treated wastewater discharges are the main entry points for PPCPs into the environment, and eventually into our drinking water. This study investigates the use of laccase-catalyzed oxidation for removing low concentrations of PPCPs from municipal wastewater primary effluent.

View Article and Find Full Text PDF

The primary limitations to inland brackish water reverse osmosis (RO) desalination are the cost and technical feasibility of concentrate disposal. To decrease concentrate volume, a side-stream process can be used to precipitate problematic scaling salts and remove the precipitate with a solid/liquid separation step. The treated concentrate can then be purified through a secondary reverse osmosis stage to increase overall recovery and decrease the volume of waste requiring disposal.

View Article and Find Full Text PDF

Inland brackish water reverse osmosis (RO) is economically and technically limited by the large volume of salty waste (concentrate) produced. The use of a controlled precipitation step, followed by solid/liquid separation (filtration), has emerged as a promising side-stream treatment process to treat reverse osmosis concentrate and increase overall system recovery. The addition of antiscalants to the RO feed prevents precipitation within the membrane system but might have a deleterious effect on a concentrate treatment process that uses precipitation to remove problematic precipitates.

View Article and Find Full Text PDF

Natural organic matter (NOM) removal during water softening is thought to occur through adsorption onto or coprecipitation with calcium and magnesium solids. However, details of precipitate composition and surface chemistry and subsequent interactions with NOM are relatively unknown. In this study, zeta potentiometry analyses of precipitates formed from inorganic solutions under varying conditions (e.

View Article and Find Full Text PDF

Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design.

View Article and Find Full Text PDF

Particle removal is a critical step in the treatment of surface water for potable use, and the majority of drinking water treatment plants employ precipitative coagulation processes such as alum and iron "sweep-floc" coagulation or lime softening for particle pre-treatment. Unfortunately, little is quantitatively known about how particle size distributions are shaped by simultaneous precipitation and flocculation. In an earlier paper, we demonstrated the effects of the saturation ratio, the mixing intensity and the seed concentration on the rates of homogeneous nucleation, precipitative growth and flocculation during precipitation of calcium carbonate at constant solution composition using electronic particle counting techniques.

View Article and Find Full Text PDF

In the treatment of surface water for potable use, precipitative coagulation (e.g., lime softening, alum or iron sweep coagulation) is widely utilized prior to particle removal processes.

View Article and Find Full Text PDF

Filtration experiments were performed with a laboratory-scale filter using spherical glass beads with 0.55 mm diameter as collectors. Suspensions were made with Min-U-Sil 5 particles, and two different methods (pH control and polymer dosing) were used for destabilization.

View Article and Find Full Text PDF

An update of research on particle behavior in water treatment plants first performed 25 years ago under the direction of Charles O'Melia is provided. The earlier work involved mathematical modeling of the changes in particle size distributions in the flocculation and sedimentation processes in water treatment plants. The current model includes corrections for short-range interactions between particles as they approach one another.

View Article and Find Full Text PDF

Softening is designed to remove hardness ions, but it can also remove NOM and particles, yielding the possibility to use the process as a pretreatment for ultrafiltration. The objectives of this research were to understand the nature of the fouling mechanisms for ultrafiltration when used for waters that either require softening or have been softened, and to use that understanding to determine promising options for the use of softening as a pretreatment before ultrafiltration. To understand fouling mechanisms in the integrated system with softening and ultrafiltration, three different levels of softening performance in terms of removal of inorganics and organic matter were selected.

View Article and Find Full Text PDF