Publications by authors named "Desmet G"

We report on a general theoretical assessment of the potential kinetic advantages of running LC gradient elution separations in the constant-pressure mode instead of in the customarily used constant-flow rate mode. Analytical calculations as well as numerical simulation results are presented. It is shown that, provided both modes are run with the same volume-based gradient program, the constant-pressure mode can potentially offer an identical separation selectivity (except from some small differences induced by the difference in pressure and viscous heating trajectory), but in a significantly shorter time.

View Article and Find Full Text PDF

A variable length method development (or VL-MD)strategy, exploiting the potential of an automatic column coupling system, is proposed and has been applied to a number of different pharmaceutical and environmental samples with a varying degree of complexity. The proposed strategy consistently produced separation methods that had at least an equally good critical pair resolution and an equally short run time to those of methods produced using commercially available MD assistance software. In some cases, the VL-MD strategy allowed the MD time to be drastically shortened from >30 h to an overnight run of only 12 h.

View Article and Find Full Text PDF

We report on the results of an experimental study established to optimize the design of microfabricated flow distributors for use in pressure-driven separations and reactions in flat-rectangular channels. For this purpose, the performance of a wide variety of possible flow distributor designs etched in glass/silicon wafers was compared, using CCD camera detection to study the shape and variance of the bands eluting from them. The best performance was obtained with radially interconnected distributors with a diverging inlet section and filled with diamond-shaped pillars, oriented perpendicular to the main flow direction and with a high transversal over axial aspect ratio.

View Article and Find Full Text PDF

The results of a numerical simulation study of the diffusion and retention in fully porous spheres and cylinders are compared with some of the high order accuracy analytical solutions for the effective diffusion coefficient that have been derived from the effective medium theory (EMT) theory in part I of the present study. A variety of different ordered (spheres and cylinders) and disordered (cylinders) packings arrangements has been considered. The agreement between simulations and theory was always excellent, lying within the (very tight) accuracy limits of the simulations over the full range of retention factor and diffusion constant values that is practically relevant for most LC applications.

View Article and Find Full Text PDF

Using the permeability analogue of the diffusion and partitioning processes occurring in a chromatographic column, the different Effective Medium Theory (EMT) models that exist in literature for the electrical and thermal conductivity have been transformed into expressions that accurately predict the B-term band broadening in chromatographic columns. The expressions are written in such a form that they hold for both fully porous and porous-shell particles, and both spherical and cylindrical particles are considered. Mutually comparing the established EMT-expressions, it has been found that the most basic variant, i.

View Article and Find Full Text PDF

A recently introduced 2.5 μm fully porous support (Kromasil Eternity) is compared with three different brands of superficially porous material (Kinetex, Halo and Poroshell 120) by means of the kinetic plot method using pharmaceutical compounds from GlaxoSmithKline as probe molecules. The kinetic plot method immediately shows the range of plate numbers wherein a support performs better than another.

View Article and Find Full Text PDF

An integrated fluidic system has been fabricated, capable of separating a mixture of different bio-molecules into its components. It is composed of a filter and an actuator; the pressure generated by the actuator sustains the flow of the mixture through the filter. The actuator is made by stacking several layers of conductive polymer.

View Article and Find Full Text PDF

The present study provides an overview of the ideal side-wall position in micro-pillar array columns for the case of semi-embedded side-walls. The position has been determined using computational fluid dynamics simulations of the flow field in flow domains with different side-wall shifts. Optimal side-wall shift values are presented for a wide range of shapes (cylinders, and diamonds and hexagons with different aspect ratios) and packing densities.

View Article and Find Full Text PDF

A novel design approach for optimizing the shape of microfabricated pillar columns for LC is presented. 2-D flow simulations are performed with a focus on electrokinetically driven flow, in order to evaluate the performance of the new method. The proposed foil shape is compared with geometrical shapes known from the literature, for various arrangements.

View Article and Find Full Text PDF

Experimental measurements to study the retention capacity and band broadening under retentive conditions using micromachined non-porous pillar array columns fabricated in cyclo olefin polymer are presented. In particular, three columns with different depths but with the same pillar structure have been fabricated via hot embossing and pressure-assisted thermal bonding. Separations of a mixture of four coumarins using varying mobile phase compositions have been monitored to study the relation between the retention factor and the ratio of organic solvent in the aqueous mobile phase.

View Article and Find Full Text PDF

A systematic study is reported on the performance of long monolithic capillary columns in gradient mode. Using a commercial nano-LC system, reversed-phase peptide separations obtained through UV-detection were conducted. The chromatographic performance, in terms of conditional peak capacity and peak productivity, was investigated for different gradient times (varying between 90 and 1320min) and different column lengths (0.

View Article and Find Full Text PDF

In the present paper, the feasibility to construct micron-sized silicon pillar channels to be used in HPLC is studied. For this, a channel with flow-through pores of 1 μm and with critical sidewall dimensions below 1 μm was constructed using advanced deep-UV lithographic equipment. Integrating a 3-nL injection system on the chip directly in front of the separation channel and using elongated distribution structures, a very controlled and high aspect ratio sample definition across the relatively wide separation channel was accomplished.

View Article and Find Full Text PDF

The separation efficiency and kinetics of several commercial HPLC particle types (both fully porous and superficially porous) have been investigated using a pharmaceutical weakly basic N-containing compound as a test molecule. A strong trend between the particle size distribution (PSD) of the particles and the typically employed "goodness of packing"-parameters was observed. The relative standard deviation of the PSD of the tested particles ranged between 0.

View Article and Find Full Text PDF

Four fully porous C18 columns (Hypersil Gold, ACE3, Xbridge and Gemini NX), widely employed in the pharmaceutical industry, were compared in terms of efficiency and analysis speed with the Kinetic Plot Method. Weakly basic, medium-sized, N-containing pharmaceutical compounds from GlaxoSmithKline Research and Development were used as test molecules. Isocratic elution was carried out at pH 4.

View Article and Find Full Text PDF

We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 microm and an interpillar distance of 2.5 microm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm).

View Article and Find Full Text PDF

The kinetic-plot approach, in which experimental t(0) and N-values are extrapolated to the performance at maximum system pressure by increasing the column length, was validated by coupling 250×3 mm columns packed with 3 μm particles. The extra-column volume introduced by coupling columns could be neglected with respect to the peak volumes. Plate numbers of up to 132,000 were experimentally achieved by coupling four columns.

View Article and Find Full Text PDF

An experimental study of a micromachined non-porous pillar array column performance under non-retentive conditions is presented. The same pillar structure has been fabricated in cyclo-olefin polymer (COP) chips with three different depths via hot embossing and pressure-assisted thermal bonding. The influence of the depth on the band broadening along with the already known contribution arising from the top and bottom cover plates has been studied.

View Article and Find Full Text PDF

We report on a new approach to obtain highly homogeneous silica-monolithic columns, applying a sol-gel fabrication process inside a rectangular pillar-array column (1 mm in width, 29 microm in height and 33.75 mm in length) having a cross-sectional area comparable to that of a 200 microm diameter circular capillary. Starting from a silicon-based pillar array and working under high phase-separation-tendency conditions (low poly(ethylene glycol) (PEG)-concentration), highly regular silica-based chromatographic systems with an external porosity in the order of 66-68% were obtained.

View Article and Find Full Text PDF

The peak-production rate (peak capacity per unit time) in comprehensive off-line two-dimensional liquid chromatography (LC/x/LC) was optimized for the separation of peptides using poly(styrene-co-divinylbenzene) monolithic columns in the reversed-phase (RP) mode. A first-dimension ((1)D) separation was performed on a monolithic column operating at a pH of 8, followed by sequential analysis of all the (1)D fractions on a monolithic column operating at a pH of 2. To obtain the highest peak-production rate, effects of column length, gradient duration, and sampling time were examined.

View Article and Find Full Text PDF

We report on a study wherein we investigate the different factors affecting the accuracy of the total pore blocking method to determine the interstitial volume of reversed-phase packed bed columns. Octane, nonane, decane and dodecane were all found to be suitable blocking agents, whereas heptane already dissolves too well in the applied fully aqueous buffers. The method of moments needs to be used to accurately determine the elution times, and a proper correction for the frit volume is needed.

View Article and Find Full Text PDF

This study reports on a quantitative study of the influence of the most important geometrical design parameters for micro-machined flow distributors with uniform cross-section and filled with diamond-shaped pillars having their longest dimension oriented perpendicular to the axial flow direction. It was found that the shape of the bands eluting from the distributor improves with increasing aspect ratio (AR) of the pillars, both in terms of global warp and local axial dispersion. Increasing the AR from 5 to 25 reduces the distributor length needed to bring the maximal transversal velocity difference below 5% from 170 μm to 15 μm when using pillars with axial width of 5 μm.

View Article and Find Full Text PDF

An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 degrees C a small C-term effect was observed in a flow rate range of 1-4 microL/min.

View Article and Find Full Text PDF

The kinetic plot method, originally developed for isocratic separations, was extended to the practically much more relevant case of gradient elution separations. A set of explicit as well as implicit data transformation expressions has been established. These expressions can readily be implemented in any calculation spread-sheet program, and allow to directly turn any experimental data set representing the relation between the separation efficiency and the flow rate measured on a single column into the kinetic performance limit curve of the tested separation medium.

View Article and Find Full Text PDF

A generic solution is proposed for the deleterious viscous heating effects in adiabatic or near-adiabatic systems that can be expected when trying to push the column operating pressures above the currently available range of ultra-high pressures (i.e., 1200 bar).

View Article and Find Full Text PDF

The present study investigates the validity of one of the key assumptions underlying the general plate height model of chromatography, i.e., the presumed independency of the individual band broadening contributions.

View Article and Find Full Text PDF