Publications by authors named "Desiree Rutschow"

So far, the role of mutations in the δ-sarcogylcan (Sgcd) gene in causing autosomal dominant dilated cardiomyopathy (DCM) remains inconclusive. A p.S151A missense mutation in exon 6 of the Sgcd gene was reported to cause severe isolated autosomal dominant DCM without affecting skeletal muscle.

View Article and Find Full Text PDF

Expansion of CAG repeats is a common feature of various neurodegenerative disorders, including Huntington's disease. Here we show that expanded CAG repeats bind to a translation regulatory protein complex containing MID1, protein phosphatase 2A and 40S ribosomal S6 kinase. Binding of the MID1-protein phosphatase 2A protein complex increases with CAG repeat size and stimulates translation of the CAG repeat expansion containing messenger RNA in a MID1-, protein phosphatase 2A- and mammalian target of rapamycin-dependent manner.

View Article and Find Full Text PDF

Dystrophin plays an important role in muscle contraction, linking the intracellular cytoskeleton to the extracellular matrix. Mutations of the dystrophin gene leading to a complete loss of the protein cause Duchenne muscular dystrophy (DMD), frequently associated with severe cardiomyopathy. Early clinical trials in DMD using gene transfer to skeletal muscle are underway, but gene transfer to dystrophic cardiac muscle has not yet been tested in humans.

View Article and Find Full Text PDF

We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold.

View Article and Find Full Text PDF

Hyperphosphorylated tau plays an important role in the formation of neurofibrillary tangles in brains of patients with Alzheimer's disease (AD) and related tauopathies and is a crucial factor in the pathogenesis of these disorders. Though diverse kinases have been implicated in tau phosphorylation, protein phosphatase 2A (PP2A) seems to be the major tau phosphatase. Using murine primary neurons from wild-type and human tau transgenic mice, we show that the antidiabetic drug metformin induces PP2A activity and reduces tau phosphorylation at PP2A-dependent epitopes in vitro and in vivo.

View Article and Find Full Text PDF

Aims: Delta-sarcoglycan is a member of the dystrophin-associated glycoprotein complex linking the cytoskeleton to the extracellular matrix. Similar to patients with defects in the gene encoding delta-sarcoglycan (Sgcd), knockout mice develop cardiomyopathy and muscular dystrophy. The aim of our study was to develop an approach for preventing cardiomyopathy in Sgcd-deficient mice by cardiac expression of the intact cDNA upon systemic delivery of adeno-associated viral (AAV) vectors.

View Article and Find Full Text PDF

We have identified a family in which several members died of sudden cardiac death or suffer from dilated cardiomyopathy (DCM) and rhythm disturbances. Mutation screening revealed co-segregation of a novel nonsense mutation (pR321X) in the lamin A gene, LMNA, with the disease. Lamin A, and its smaller splice form lamin C are nuclear intermediate filament proteins forming a major part of the lamina, which is underlying the inner nuclear membrane.

View Article and Find Full Text PDF

A supernumerary C-band-positive microchromosome was observed in 88% of lymphocyte metaphases from a healthy 24-year-old female. Traditional cytogenetic analyses failed to determine the microchromosome's origin and structure. However, hybridization experiments with a panel of chromosome-specific alpha-satellite probes demonstrated that this microchromosome was derived from chromosome 16 and consisted mainly of transcriptionally inactive alpha-satellite DNA.

View Article and Find Full Text PDF