In 2009, a low-volume gravel road in Sweden was stabilised using fly ash from a local paper mill. The objective was to examine whether fly ash could be used to enhance the stability of the road and how the nearby environment would be affected. The technical and environmental properties of the road have been monitored for two, six, and eleven years.
View Article and Find Full Text PDFFly ash from a cogeneration plant near Sundsvall in Sweden was treated in an ash-washing facility. The leaching of chromium (Cr) and molybdenum (Mo) from the ash residue exceeded the limit values for non-hazardous landfills. In this study factors that influence the leaching of Cr and Mo were identified and methods that can reduce the leaching were evaluated.
View Article and Find Full Text PDFThe aim of this study was to evaluate the efficiency of a large scale washing/wet sieving technique for a soil contaminated with wood impregnation chemicals by 1) defining the final distribution of trace elements (As, Cu, Cr, Zn) and polycyclic aromatic hydrocarbons (PAH) in separated soil particle size fractions; and 2) defining the leaching behavior of the contaminants in these soil fractions. A soil washing experiment was implemented at waste management facility in Sweden using a full scale soil sorting and washing equipment. Five tons of soil was loaded to the equipment and wet-sieved into the following fractions: >16 mm, 8-16 mm, 2-8 mm, 0.
View Article and Find Full Text PDFThermal treatment, if properly performed, is an effective way of destroying organic compounds in contaminated soil, while impact on co-present inorganic contaminants varies depending on the element. Leaching of trace elements in thermally treated soil can be altered by co-combusting different types of materials. This study aimed at assessing changes in mobility of As, Cr and Cu in thermally treated soil as affected by addition of industrial by-products prior to soil combustion.
View Article and Find Full Text PDFThermal treatment is used to remediate soil co-contaminated with organic and inorganic contaminants. It destroys organic contaminants, but the remaining inorganic contaminants require further treatment. In this study the effects of thermal treatment on the mobility, speciation and chemical fractionation of As, Cr and Cu in a CCA-polluted soil were evaluated by leaching tests, As speciation assays and a sequential extraction procedure.
View Article and Find Full Text PDFCarbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses.
View Article and Find Full Text PDF