Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H.
View Article and Find Full Text PDFS-adenosylmethionine (SAM) is a ubiquitous co-factor that serves as a donor for methylation reactions and additionally serves as a donor of other functional groups such as amino and ribosyl moieties in a variety of other biochemical reactions. Such versatility in function is enabled by the ability of SAM to be recognized by a wide variety of protein molecules that vary in their sequences and structural folds. To understand what gives rise to specific SAM binding in diverse proteins, we set out to study if there are any structural patterns at their binding sites.
View Article and Find Full Text PDFGaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the β-glucocerebrosidase (GCase) GBA gene, which result in macrophage dysfunction. CRISPR (clustered regularly interspaced short palindromic repeats) editing of the homozygous L444P (1448T→C) GBA mutation in type 2 GD (GBA-/-) human-induced pluripotent stem cells (hiPSCs) yielded both heterozygous (GBA+/-) and homozygous (GBA+/+) isogenic lines. Macrophages derived from GBA-/-, GBA+/- and GBA+/+ hiPSCs showed that GBA mutation correction restores normal macrophage functions: GCase activity, motility, and phagocytosis.
View Article and Find Full Text PDFHelicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H.
View Article and Find Full Text PDFDNA topoisomerases play a crucial role in maintaining DNA superhelicity, thereby regulating various cellular processes. Unlike most other species, the human pathogen Helicobacter pylori has only two topoisomerases, Topoisomerase I and DNA gyrase, the physiological roles of which remain to be explored. Interestingly, there is enormous variability among the C-terminal domains (CTDs) of Topoisomerase I across bacteria.
View Article and Find Full Text PDFAs no crystal structure of full-size MutL bound to DNA has been obtained up to date, in the present work we used crosslinking and Förster resonance energy transfer (FRET) assays for probing the putative DNA-binding center of MutL from Escherichia coli. Several single-cysteine MutL variants (scMutL) were used for site-specific crosslinking or fluorophore modification. The crosslinking efficiency between scMutL proteins and mismatched DNA modified with thiol-reactive probes correlated with the distances from the Cys residues to the DNA calculated from a model of MutS-MutL-DNA complex.
View Article and Find Full Text PDFHorizontal gene transfer through natural transformation is a major driver of antibiotic resistance spreading in many pathogenic bacterial species. In the case of Gram-negative bacteria, and in particular of Helicobacter pylori, the mechanisms underlying the handling of the incoming DNA within the periplasm are poorly understood. Here we identify the protein ComH as the periplasmic receptor for the transforming DNA during natural transformation in H.
View Article and Find Full Text PDFMethylation of genomic DNA can influence the transcription profile of an organism and may generate phenotypic diversity for rapid adaptation in a dynamic environment. M.HpyAXI is a Type III DNA methyltransferase present in Helicobacter pylori and is upregulated at low pH.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors notified us of an error in the presentation of Fig. 6G.
View Article and Find Full Text PDFThe bacterium is one of the most common infectious agents found in the human stomach. has an unusually large number of DNA methyltransferases (MTases), prompting speculation that they may be involved in the cancerization of epithelial cells. The locus, consisting of the and ORFs, encodes for a truncated and inactive MTase in strain 26695.
View Article and Find Full Text PDFMany bacterial genomes exclusively display an N4-methyl cytosine base (m4C), whose physiological significance is not yet clear. Helicobacter pylori is a carcinogenic bacterium and the leading cause of gastric cancer in humans. Helicobacter pylori strain 26695 harbors a single m4C cytosine methyltransferase, M2.
View Article and Find Full Text PDFThe DNA mismatch repair (MMR) pathway removes errors that appear during genome replication. MutS is the primary mismatch sensor and forms an asymmetric dimer that encircles DNA to bend it to scan for mismatches. The mechanism utilized to load DNA into the central tunnel was unknown and the origin of the force required to bend DNA was unclear.
View Article and Find Full Text PDFG-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome.
View Article and Find Full Text PDFEcoP15I DNA methyltransferase (M.EcoP15I) recognizes short asymmetric sequence, 5'-CAGCAG-3', and methylates the second adenine only on one strand of the double-stranded DNA (dsDNA). In vivo, this methylation is sufficient to protect the host DNA from cleavage by the cognate restriction endonuclease, R.
View Article and Find Full Text PDFRenal transplant is the treatment of choice for patients with terminal end-stage renal disease. We have previously identified low levels of catalytic IgG as a potential prognosis marker for chronic allograft rejection. The origin and physiopathological relevance of catalytic Abs is not well understood, owing to the fact that catalytic Abs have been studied in relatively small cohorts of patients with rare diseases and/or without systematic follow-up.
View Article and Find Full Text PDFBackground: Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive.
Results: To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein.
DNA processing protein A (DprA) plays a crucial role in the process of natural transformation. This is accomplished through binding and subsequent protection of incoming foreign DNA during the process of internalization. DprA along with Single stranded DNA binding protein A (SsbA) acts as an accessory factor for RecA mediated DNA strand exchange.
View Article and Find Full Text PDFPhase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N(6)-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions.
View Article and Find Full Text PDFHelicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H. pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity.
View Article and Find Full Text PDFThe significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures.
View Article and Find Full Text PDFRestriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups.
View Article and Find Full Text PDFNucleic Acids Res
March 2013
Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction-modification (R-M) systems in this bacterium creates a barrier against natural transformation by foreign DNA.
View Article and Find Full Text PDFAbzymes are immunoglobulins endowed with enzymatic activities. The catalytic activity of an abzyme resides in the variable domain of the antibody, which is constituted by the close spatial arrangement of amino acid residues involved in catalysis. The origin of abzymes is conferred by the innate diversity of the immunoglobulin gene repertoire.
View Article and Find Full Text PDF