Higher grain yield in high-yielding rice varieties is mostly driven by nitrogen (N) fertilizer applied in abundant amounts leading to increased production cost and environmental pollution. This has fueled the studies on nitrogen use efficiency (NUE) to decrease the N fertilizer application in rice to the possible extent. NUE is a complex physiological trait controlled by multiple genes, but yet to be completely deciphered in rice.
View Article and Find Full Text PDFPlanta
September 2022
Identification of trait enhancing QTLs for yield and photosynthesis-related traits in rice using interspecific mapping population and chromosome segment substitution lines derived from a cross between Oryza sativa and Oryza rufipogon. Wild rice contains novel genes which can help in improving rice yield. Common wild rice Oryza rufipogon is a known source for enhanced photosynthesis and yield-related traits.
View Article and Find Full Text PDFRice (Oryza sativa L.), a major dietary source, is often cultivated in soils poor in available inorganic orthophosphate (Pi), which is a key nutrient for growth and development. Poor soils are amended by phosphorus (P) fertilizer, which is derived from the non-renewable rock phosphate reserves.
View Article and Find Full Text PDFCrop improvement for Nitrogen Use Efficiency (NUE) requires a well-defined phenotype and genotype, especially for different N-forms. As N-supply enhances growth, we comprehensively evaluated 25 commonly measured phenotypic parameters for N response using 4 N treatments in six indica rice genotypes. For this, 32 replicate potted plants were grown in the green-house on nutrient-depleted sand.
View Article and Find Full Text PDFAn upland rice variety, Nagina22 (N22) and its 137 ethyl methanesulfonate (EMS)-induced mutants, along with a sensitive variety, Jaya, was screened both in low phosphorus (P) field (Olsen P 1.8) and in normal field (Olsen P 24) during dry season. Based on the grain yield (YLD) of plants in normal field and plants in low P field, 27 gain of function (high-YLD represented as hy) and 9 loss of function (low-YLD represented as ly) mutants were selected and compared with N22 for physiological and genotyping studies.
View Article and Find Full Text PDFImprovement of photosynthetic traits is a promising strategy to break the yield potential barrier of major food crops. Leaf photosynthetic traits were evaluated in a set of high yielding , cv. Swarna × backcross introgression lines (BILs) along with recurrent parent Swarna, both in wet (Kharif) and dry (Rabi) seasons in normal irrigated field conditions.
View Article and Find Full Text PDFMulti environment testing helps identify stable genotypes especially for adverse abiotic stress situations. In the era of climate change and multiple abiotic stresses, it becomes important to analyze stability of rice lines under both irrigated and stress conditions. Mutants are an important genetic resource which can help in revealing the basis of natural variation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are known to regulate expression of genes under stress. We report here the deep sequencing of small RNAs expressed during control, short and prolonged heat stress and recovery. Genome-wide identification of miRNAs in tolerant (Nagina 22) and susceptible (Vandana) rice cultivars was performed in 16 samples representing root and shoot of 13-day-old seedlings.
View Article and Find Full Text PDFAdvanced backcross introgression lines (BILs) developed from crosses of var. Swarna/ accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications.
View Article and Find Full Text PDFFront Plant Sci
December 2015
In changing climatic conditions, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical, and molecular levels is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in 11 popular and mega rice cultivars widely grown in India.
View Article and Find Full Text PDFBackground: Heat is one of the major factors that considerably limit rice production. Nagina 22 (N22) is a deep-rooted, drought and heat tolerant aus rice cultivar. This study reports the characterization of a previously isolated dark green leaf mutant N22-H-dgl219 (NH219) which showed reduced accumulation of reactive oxygen species in leaf under 40°C heat conditions.
View Article and Find Full Text PDF