Publications by authors named "Desiati P"

Article Synopsis
  • * The study introduces enhanced modeling techniques for neutrino flux and detector response, and it distinguishes between starting (inside) and throughgoing (outside) neutrino interaction events to improve energy resolution.
  • * The findings indicate a best-fit point for the 3+1 model with sin²(2θ_{24})=0.16 and Δm_{41}²=3.5 eV², supporting previous studies while showing consistency with no evidence of sterile neutrinos, as reflected
View Article and Find Full Text PDF
Article Synopsis
  • - The study presents a measurement of astrophysical tau neutrinos using 9.7 years of data from the IceCube observatory, identifying seven candidate events with energies between 20 TeV and 1 PeV.
  • - Convolutional neural networks were used to analyze simulated event images, helping to estimate the parent tau neutrino energy to be around 200 TeV while facing a background of about 0.5 events primarily from non-tau astrophysical neutrinos.
  • - The results confirmed the presence of astrophysical tau neutrinos at a 5σ significance level, aligning with existing IceCube measurements and theoretical predictions regarding neutrino flux and oscillations.
View Article and Find Full Text PDF

The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth's atmosphere, is unknown. Because of deflection by interstellar magnetic fields, cosmic rays produced within the Milky Way arrive at Earth from random directions. However, cosmic rays interact with matter near their sources and during propagation, which produces high-energy neutrinos.

View Article and Find Full Text PDF
Article Synopsis
  • A supermassive black hole in the galaxy NGC 1068, hidden by cosmic dust, is believed to power its active core, and neutrinos might help us understand this.
  • Researchers analyzed data from the IceCube neutrino detector from 2011 to 2020 to detect neutrinos from various gamma-ray sources, including NGC 1068.
  • They discovered an excess of high-energy neutrinos from NGC 1068, indicating a significant connection to the galaxy's activity, and these neutrinos were found to be much more abundant than previously measured gamma rays from the same source.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the presence of an unstable sterile neutrino using eight years of atmospheric muon neutrino data collected at the IceCube Neutrino Observatory.
  • Results indicate that both traditional three-neutrino models and 3+1 sterile neutrino models are less favored compared to the unstable sterile neutrino model, but no significant evidence for 3+1 neutrinos with decay was found.
  • The research provides specific parameters for the unstable sterile neutrino model, while also excluding favored regions of the 3+1 model from prior short-baseline oscillation studies.
View Article and Find Full Text PDF

We report a search for nonstandard neutrino interactions (NSI) using eight years of TeV-scale atmospheric muon neutrino data from the IceCube Neutrino Observatory. By reconstructing incident energies and zenith angles for atmospheric neutrino events, this analysis presents unified confidence intervals for the NSI parameter ε_{μτ}. The best-fit value is consistent with no NSI at a p value of 25.

View Article and Find Full Text PDF

We present an all-sky 90% confidence level upper limit on the cosmic flux of relativistic magnetic monopoles using 2886 days of IceCube data. The analysis was optimized for monopole speeds between 0.750c and 0.

View Article and Find Full Text PDF

The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100  eV^{2}.

View Article and Find Full Text PDF

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.

View Article and Find Full Text PDF

This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1  TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches.

View Article and Find Full Text PDF

High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations.

View Article and Find Full Text PDF

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5  GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/E_{ν} as long-baseline experiments but with substantially higher-energy neutrinos.

View Article and Find Full Text PDF

With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino 'track' events from the Northern Hemisphere, while the second analysis uses 2 years of 'cascade' events from the full sky.

View Article and Find Full Text PDF

IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.

View Article and Find Full Text PDF

We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9}  GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5}  GeV to above 10^{11}  GeV. Two neutrino-induced events with an estimated deposited energy of (2.

View Article and Find Full Text PDF

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{μ} or ν[over ¯]_{μ} disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation.

View Article and Find Full Text PDF

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of ν(e) and ν(τ) charged-current and neutral-current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012.

View Article and Find Full Text PDF

We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector.

View Article and Find Full Text PDF

A diffuse flux of astrophysical neutrinos above 100 TeV has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35 TeV and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for showerlike events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013.

View Article and Find Full Text PDF

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8)  GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ.

View Article and Find Full Text PDF

Observations with the Interstellar Boundary Explorer (IBEX) have shown enhanced energetic neutral atom (ENA) emission from a narrow, circular ribbon likely centered on the direction of the local interstellar medium (LISM) magnetic field. Here, we show that recent determinations of the local interstellar velocity, based on interstellar atom measurements with IBEX, are consistent with the interstellar modulation of high-energy (tera-electron volts, TeV) cosmic rays and diffusive propagation from supernova sources revealed in global anisotropy maps of ground-based high-energy cosmic-ray observatories (Milagro, Asγ, and IceCube). Establishing a consistent local interstellar magnetic field direction using IBEX ENAs at hundreds to thousands of eV and galactic cosmic rays at tens of TeV has wide-ranging implications for the structure of our heliosphere and its interactions with the LISM, which is particularly important at the time when the Voyager spacecraft are leaving our heliosphere.

View Article and Find Full Text PDF

We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds.

View Article and Find Full Text PDF

We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore.

View Article and Find Full Text PDF

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04±0.16 and 1.

View Article and Find Full Text PDF

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore subarray is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos.

View Article and Find Full Text PDF