Publications by authors named "Desi W Soegiarto"

The hedgehog family of morphogens are regulators of cell proliferation, differentiation and cell-cell communication. These morphogens have been shown to have important roles in organogenesis, spermatogenesis, stem cell maintenance and oncogenesis. Indian hedgehog (encoded by Ihh) has been shown to be expressed in the uterine epithelium under the control of the steroid hormone, progesterone.

View Article and Find Full Text PDF

Indian hedgehog (Ihh) is actively involved in endochondral bone formation. Although expression of Ihh is mostly restricted to pre-hypertrophic chondrocytes, the role of chondrocyte-derived Ihh in endochondral bone formation is not completely understood. To address such unresolved issues, we used the Cre/loxP approach to generate mice (Col2alpha1Cre; Ihhd/Ihhd) in which the Ihh gene was selectively ablated from collagen type II expressing cells.

View Article and Find Full Text PDF

In the developing growth plate, periarticular chondrocytes proliferate, differentiate into columnar chondrocytes, and then further differentiate into postmitotic hypertrophic chondrocytes. Parathyroid hormone-related (PTH-related) protein (PTHrP), regulated by Indian hedgehog (Ihh), prevents premature hypertrophic differentiation, thereby maintaining the length of columns. Ihh regulates cartilage development through PTHrP-independent pathways as well.

View Article and Find Full Text PDF

It was the aim of this study to further explore the functional role of vitamin D in the endocrine pancreas. By gene targeting, we have recently generated mice in which a lacZ reporter gene is driven by the endogenous vitamin D receptor (VDR) promoter. These mice express a functionally inactive mutant VDR.

View Article and Find Full Text PDF

The vitamin D hormone 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], the biologically active form of vitamin D, is essential for an intact mineral metabolism. Using gene targeting, we sought to generate vitamin D receptor (VDR) null mutant mice carrying the reporter gene lacZ driven by the endogenous VDR promoter. Here we show that our gene-targeted mutant mice express a VDR with an intact hormone binding domain, but lacking the first zinc finger necessary for DNA binding.

View Article and Find Full Text PDF