Energy metabolism homeostasis is essential for oocyte maturation and acquisition of developmental capacity. However, bovine oocyte in vitro maturation (IVM) is highly susceptible to metabolic stress and lipid accumulation. β-Aminoisobutyric acid (BAIBA), a metabolite produced in response to skeletal muscle exercise, has been reported to be involved in lipid and glucose metabolism, as well as inflammation and oxidative stress.
View Article and Find Full Text PDFA detailed understanding of the precise regulatory mechanisms governing buffalo skeletal muscle is crucial for improving meat quality and yield. Proper skeletal muscle fate decisions necessitate the accurate regulation of key enhancers. This study screened nine potential enhancers linked to muscle development by analysing ATAC-seq data from buffalo myoblasts during the proliferative and differentiative phases.
View Article and Find Full Text PDFMilk is one of the most common sources of nutrients in humans, however, the composition and healthy value of the milk derived from different animals are very different. Here, we systemically compared the protein and lipid profiles and evaluated the anti-inflammation and antioxidant effect of buffalo and Holstein-derived milk on Caco-2 cells. Results showed that 906 proteins and 1899 lipids were identified in the buffalo milk and Holstein milk samples including 161 significantly different proteins (DEPs) and 49 significantly different lipids.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
BRG1 has been found to promote the generation of induced pluripotent stem cells (iPSCs) by regulating epigenetic modifications or binding to transcription factors, however, the role of BRG1 on the cellular metabolism during reprogramming has not been reported. In this study, we found that BRG1 improved the efficiency of porcine iPSC generation, and upregulated the expression of pluripotency-related factors. Further analysis revealed that BRG1 promoted cellular glycolysis, and increased levels of glycolysis-related metabolites.
View Article and Find Full Text PDFOxidative stress impairs the developmental potential of oocytes during in vitro maturation (IVM). L-kynurenine (L-KYN), an endogenous metabolite, exhibits antioxidant, anti-inflammatory and neuroprotective effects. This work aimed to evaluate the potential effects of L-KYN on bovine oocyte IVM and its mechanisms.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2024
The physiological state of Granulosa cells (GCs) is intricately linked to the growth and development of oocytes. Oxidative stress has been found to cause damage to GCs in vitro. Astaxanthin (AST), a well-known natural ketone-type carotenoid, has demonstrated strong antioxidant properties.
View Article and Find Full Text PDFMammalian embryos often suffer from oxidative stress in vitro, as the oxygen in the atmosphere is higher than that in the oviductal environment. Vitamin C (Vc) has been proven to enhance early embryonic development , but the underlying mechanism remains unclear. In this study, we investigated the pathways of action by which Vc promotes the development of porcine embryos.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ (PPARG) has various splicing variants and plays essential roles in the regulation of adipocyte differentiation and lipogenesis. However, little is known about the expression pattern and effect of the PPARG on milk fat synthesis in the buffalo mammary gland. In this study, we found that only and of the splicing variant were expressed in the buffalo mammary gland.
View Article and Find Full Text PDFAutophagy is essential for oocyte maturation and preimplantation embryo development. ATG4C, a member of the ATG4 family, plays a crucial role in the autophagy process. The effect of ATG4C on the early embryonic development in pig has not been studied.
View Article and Find Full Text PDFIntramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4).
View Article and Find Full Text PDFCumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding -matured oocytes were investigated.
View Article and Find Full Text PDFZinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism.
View Article and Find Full Text PDFRecently, it has been discovered that certain dairy buffaloes can produce higher milk yield and milk fat yield under the same feeding management conditions, which is a potential new trait. It is unknown to what extent, the rumen microbiome and its metabolites, as well as the host metabolism, contribute to milk yield and milk fat yield. Therefore, we will analyze the rumen microbiome and host-level potential regulatory mechanisms on milk yield and milk fat yield through rumen metagenomics, rumen metabolomics, and serum metabolomics experiments.
View Article and Find Full Text PDFAnimals (Basel)
February 2024
In recent years, the meat and dairy value of buffaloes has become a major concern in buffalo breeding, and the improvement of buffalo beef quality is key to protecting buffalo germplasm resources and solving the problem of beef supply. MiRNAs play a significant role in regulating muscle development. However, the precise mechanism by which they regulate the development of buffalo skeletal muscles remains largely unexplored.
View Article and Find Full Text PDFThe epigenetic modification levels of donor cells directly affect the developmental potential of somatic cell nuclear transfer (SCNT) embryos. BRG1, as an epigenetic modifying enzyme, has not yet been studied in donor cells and SCNT embryos. In this study, BRG1 was overexpressed in porcine fetal fibroblasts (PFFs), its effect on chromatin openness and gene transcription was examined, subsequently, the development potential of porcine SCNT embryos was investigated.
View Article and Find Full Text PDFIn cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways.
View Article and Find Full Text PDFCircular RNAs (circRNA) are a kind of endogenous biological macromolecules that play significant roles in many biological processes, including adipogenesis, a precisely orchestrated process that is mediated by a large number of factors. Among them, peroxisome proliferator-activated receptor gamma (PPARG), is undoubtedly the most important regulator of adipocyte development in all types of adipose tissue. The formation of intramuscular fat (IMF), is a key factor that influences the meat quality in livestock animals.
View Article and Find Full Text PDFCattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.).
View Article and Find Full Text PDFIn vitro maturation (IVM) methods for porcine oocytes are still deficient in achieving full developmental capacity, as the currently available oocyte in vitro culture systems still have limitations. In vitro embryo production must also improve the porcine oocyte IVM system to acquire oocytes with good developmental potential. Herein, we tested a three-dimensional (3D) glass scaffold culture system for porcine oocyte maturation.
View Article and Find Full Text PDFBrahma-related gene 1 (BRG1) enhances the pluripotency of embryonic and adult stem cells, however, its effect on induced pluripotent stem cell (iPSC) pluripotency has not been reported. The aim of this study was to investigate the effect of BRG1 on porcine iPSC pluripotency and its mechanisms. The effect of BRG1 on porcine iPSC pluripotency was explored by positive and negative control it.
View Article and Find Full Text PDFFollistatin (FST), a member of the transforming growth factor-β (TGF-β) superfamily, has been identified as an inhibitor of follicle-stimulating hormone. Previous studies showed that it plays an important role in animal reproduction. Therefore, this study aims to investigate its effect on the maturation of buffalo oocytes in vitro, and the underlying mechanism of FST affecting oocyte maturation was also explored in buffalo cumulus cells.
View Article and Find Full Text PDFCattle skeletal muscle development is a complex and highly coordinated biological process mediated by a series of myogenic regulators, which plays a critical role in beef yield and quality. Long non-coding RNAs (lncRNAs) have been shown to regulate skeletal muscle development. However, the molecular mechanism by which lncRNAs regulate skeletal muscle development is largely unknown.
View Article and Find Full Text PDF