Publications by authors named "Deshuang Huang"

Cell type annotation is a critical step in analyzing single-cell RNA sequencing (scRNA-seq) data. A large number of deep learning (DL)-based methods have been proposed to annotate cell types of scRNA-seq data and have achieved impressive results. However, there are several limitations to these methods.

View Article and Find Full Text PDF
Article Synopsis
  • The gene regulatory network (GRN) is crucial for understanding cellular systems and disease mechanisms, and recent deep learning methods have shown promise in inferring GRNs from single-cell transcriptomic data.
  • A new model, scMGATGRN, has been developed using a multiview graph attention network that integrates local and high-order neighbor information, enhancing the process of inferring GRNs.
  • Comparative experiments revealed that scMGATGRN outperforms ten other methods across various datasets, confirming its effectiveness, and the code is available on GitHub for public use.
View Article and Find Full Text PDF
Article Synopsis
  • Circular RNAs (circRNAs) are important for gene expression, and identifying how they interact with RNA-binding proteins (RBPs) is crucial in biology.
  • Traditional deep learning methods struggle with capturing long-range interactions and utilizing multiple features effectively.
  • The new model, iCRBP-LKHA, uses advanced techniques to improve the identification of circRNA-RBP interactions, outperforming existing methods in various datasets and showing promise for other RNA interactions.
View Article and Find Full Text PDF

Cross-species prediction of TF binding remains a major challenge due to the rapid evolutionary turnover of individual TF binding sites, resulting in cross-species predictive performance being consistently worse than within-species performance. In this study, a novel Nucleotide-Level Deep Neural Network (NLDNN) is first proposed to predict TF binding within or across species. NLDNN regards the task of TF binding prediction as a nucleotide-level regression task, which takes DNA sequences as input and directly predicts experimental coverage values.

View Article and Find Full Text PDF

Transformer-based models have revolutionized single cell RNA-seq (scRNA-seq) data analysis. However, their applicability is challenged by the complexity and scale of single-cell multi-omics data. Here a novel single-cell multi-modal/multi-task transformer (scmFormer) is proposed to fill up the existing blank of integrating single-cell proteomics with other omics data.

View Article and Find Full Text PDF

Background: TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level.

View Article and Find Full Text PDF

The transcription factor binding site is a deoxyribonucleic acid sequence that binds to transcription factors. Transcription factors are proteins that regulate the transcription gene. Abnormal turnover of transcription factors can lead to uncontrolled cell growth.

View Article and Find Full Text PDF

The advent of single-cell sequencing technologies has revolutionized cell biology studies. However, integrative analyses of diverse single-cell data face serious challenges, including technological noise, sample heterogeneity, and different modalities and species. To address these problems, we propose scCorrector, a variational autoencoder-based model that can integrate single-cell data from different studies and map them into a common space.

View Article and Find Full Text PDF

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited.

View Article and Find Full Text PDF

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure.

View Article and Find Full Text PDF

Introduction: Imbalances in gut microbes have been implied in many human diseases, including colorectal cancer (CRC), inflammatory bowel disease, type 2 diabetes, obesity, autism, and Alzheimer's disease. Compared with other human diseases, CRC is a gastrointestinal malignancy with high mortality and a high probability of metastasis. However, current studies mainly focus on the prediction of colorectal cancer while neglecting the more serious malignancy of metastatic colorectal cancer (mCRC).

View Article and Find Full Text PDF

Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding pathogenesis, diagnosis, and prevention, as well as identifying relevant biomarkers. During the past few years, a large number of deep learning (DL) based methods have been proposed for predicting circRNA-disease association and achieved impressive prediction performance.

View Article and Find Full Text PDF

Motivation: Cell-type-specific gene expression is maintained in large part by transcription factors (TFs) selectively binding to distinct sets of sites in different cell types. Recent research works have provided evidence that such cell-type-specific binding is determined by TF's intrinsic sequence preferences, cooperative interactions with co-factors, cell-type-specific chromatin landscapes and 3D chromatin interactions. However, computational prediction and characterization of cell-type-specific and shared binding sites is rarely studied.

View Article and Find Full Text PDF

Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression.

View Article and Find Full Text PDF

In recent years, major advances have been made in various chromosome conformation capture technologies to further satisfy the needs of researchers for high-quality, high-resolution contact interactions. Discriminating the loops from genome-wide contact interactions is crucial for dissecting three-dimensional(3D) genome structure and function. Here, we present a deep learning method to predict genome-wide chromatin loops, called DLoopCaller, by combining accessible chromatin landscapes and raw Hi-C contact maps.

View Article and Find Full Text PDF

Increasing evidence suggest that circRNA, as one of the most promising emerging biomarkers, has a very close relationship with diseases. Exploring the relationship between circRNA and diseases can provide novel perspective for diseases diagnosis and pathogenesis. The existing circRNA-disease association (CDA) prediction models, however, generally treat the data attributes equally, do not pay special attention to the attributes with more significant influence, and do not make full use of the correlation and symbiosis between attributes to dig into the latent semantic information of the data.

View Article and Find Full Text PDF

DNA-binding proteins (DBPs) play vital roles in the regulation of biological systems. Although there are already many deep learning methods for predicting the sequence specificities of DBPs, they face two challenges as follows. Classic deep learning methods for DBPs prediction usually fail to capture the dependencies between genomic sequences since their commonly used one-hot codes are mutually orthogonal.

View Article and Find Full Text PDF

Transcription factors (TFs) play an important role in regulating gene expression, thus the identification of the sites bound by them has become a fundamental step for molecular and cellular biology. In this paper, we developed a deep learning framework leveraging existing fully convolutional neural networks (FCN) to predict TF-DNA binding signals at the base-resolution level (named as FCNsignal). The proposed FCNsignal can simultaneously achieve the following tasks: (i) modeling the base-resolution signals of binding regions; (ii) discriminating binding or non-binding regions; (iii) locating TF-DNA binding regions; (iv) predicting binding motifs.

View Article and Find Full Text PDF

Many biological studies show that the mutation and abnormal expression of microRNAs (miRNAs) could cause a variety of diseases. As an important biomarker for disease diagnosis, miRNA is helpful to understand pathogenesis, and could promote the identification, diagnosis and treatment of diseases. However, the pathogenic mechanism how miRNAs affect these diseases has not been fully understood.

View Article and Find Full Text PDF

Discovery of transcription factor binding sites (TFBSs) is of primary importance for understanding the underlying binding mechanic and gene regulation process. Growing evidence indicates that apart from the primary DNA sequences, DNA shape landscape has a significant influence on transcription factor binding preference. To effectively model the co-influence of sequence and shape features, we emphasize the importance of position information of sequence motif and shape pattern.

View Article and Find Full Text PDF

The abuse of traditional antibiotics has led to an increase in the resistance of bacteria and viruses. Similar to the function of antibacterial peptides, bacteriocins are more common as a kind of peptides produced by bacteria that have bactericidal or bacterial effects. More importantly, the marine environment is one of the most abundant resources for extracting marine microbial bacteriocins (MMBs).

View Article and Find Full Text PDF

Graph is a natural data structure for describing complex systems, which contains a set of objects and relationships. Ubiquitous real-life biomedical problems can be modeled as graph analytics tasks. Machine learning, especially deep learning, succeeds in vast bioinformatics scenarios with data represented in Euclidean domain.

View Article and Find Full Text PDF

Clinical evidence began to accumulate, suggesting that circRNAs can be novel therapeutic targets for various diseases and play a critical role in human health. However, limited by the complex mechanism of circRNA, it is difficult to quickly and large-scale explore the relationship between disease and circRNA in the wet-lab experiment. In this work, we design a new computational model MGRCDA on account of the metagraph recommendation theory to predict the potential circRNA-disease associations.

View Article and Find Full Text PDF

The study of transcriptional regulation is still difficult yet fundamental in molecular biology research. Recent research has shown that the double helix structure of nucleotides plays an important role in improving the accuracy and interpretability of transcription factor binding sites (TFBSs). Although several computational methods have been designed to take both DNA sequence and DNA shape features into consideration simultaneously, how to design an efficient model is still an intractable topic.

View Article and Find Full Text PDF

Background: The incidence of multiple primary malignant tumors (MPMTs) is rising due to the development of screening technologies, significant treatment advances and increased aging of the population. For patients with a prior cancer history, identifying the tumor origin of the second malignant lesion has important prognostic and therapeutic implications and still represents a difficult problem in clinical practice.

Methods: In this study, we evaluated the performance of a 90-gene expression assay and explored its potential diagnostic utility for MPMTs across a broad spectrum of tumor types.

View Article and Find Full Text PDF