Publications by authors named "Desheng Jiang"

Functional near-infrared spectroscopy (fNIRS) was used to explore the effects of sedentary behavior on the brain functional connectivity characteristics of college students in the resting state after recovering from Corona Virus Disease 2019 (COVID-19). Twenty-two college students with sedentary behavior and 22 college students with sedentary behavior and maintenance of exercise habits were included in the analysis; moreover, 8 ​min fNIRS resting-state data were collected. Based on the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the time series, the resting-state functional connection strength of the two groups of subjects, including the prefrontal cortex (PFC) and the lower limb supplementary motor area (LS), as well as the functional activity and functional connections of the primary motor cortex (M1) were calculated.

View Article and Find Full Text PDF

This study explores the effects of growth temperature of InGaN/GaN quantum well (QW) layers on indium migration, structural quality, and luminescence properties. It is found that within a specific range, the growth temperature can control the efficiency of In incorporation into QWs and strain energy accumulated in the QW structure, modulating the luminescence efficiency. Temperature-dependent photoluminescence (TDPL) measurements revealed a more pronounced localized state effect in QW samples grown at higher temperatures.

View Article and Find Full Text PDF

Monovalent SARS-CoV-2 Prototype (Wuhan-Hu-1) and bivalent (Prototype + BA.4/5) COVID-19 vaccines have demonstrated a waning of vaccine-mediated immunity highlighted by lower neutralizing antibody responses against SARS-CoV-2 Omicron XBB sub-variants. The reduction of humoral immunity due to the rapid evolution of SARS-CoV-2 has signaled the need for an update to vaccine composition.

View Article and Find Full Text PDF

Salt stress can cause cellular dehydration, which induces oxidative stress by increasing the production of reactive oxygen species (ROS) in plants. They may play signaling roles and cause structural damages to the cells. To overcome the negative impacts, the plant ROS scavenging system plays a vital role in maintaining the cellular redox homeostasis.

View Article and Find Full Text PDF

Potential barriers between the waveguide layer and MQW active region may influence injection efficiency significantly, which is important in improving output characteristics of GaN-based green laser diodes (LDs). In this study, potential barriers and injection efficiency of LDs are investigated by simulation methods. It is found that different indium content in quantum barrier layers results in different potential barrier heights, leading to different recombination rates in upper and lower waveguide layers, and the injection efficiency can be modulated effectively.

View Article and Find Full Text PDF

We have obtained an ultralong lifetime exciton emission in InAs/GaAs single quantum dots (QDs) when the QD films are transferred onto the Si substrate covered by Ag nanoparticles. It is found that when the separation distance from the QD layer (also the wetting layer) to the Ag nanoparticles is around 19 nm, the QD emission lifetime changes from approximately 1 to 2000 ns. A classical dipole oscillator model is used to quantitatively calculate the spontaneous radiation decay rate of the excitons in the wetting layer (WL), and the simulated calculation result is in good agreement with the experimental one, revealing that the long lifetime exciton emission is due to the existence of the dark state in the WL.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism.

View Article and Find Full Text PDF

Reliable sensing and accurate location of a weak and small hot spot are critical for applications in industrial infrastructure monitoring. We propose and experimentally demonstrate a practical and reliable distributed hot spot detection method using ultra-weak fiber Bragg gratings (UWFBGs) array and optical time-domain reflectometry (OTDR) based interrogator. To reliably detect the hot spots, the grating spacing of the sensor array is decreased to a similar size of the hot spot.

View Article and Find Full Text PDF

Quantum technologies require robust and photostable single-photon emitters. Here, room temperature operated single-photon emissions from isolated defects in aluminum nitride (AlN) films are reported. AlN films were grown on nanopatterned sapphire substrates by metal organic chemical vapor deposition.

View Article and Find Full Text PDF

The effect of unintentionally doped hydrogen on the properties of Mg-doped p-GaN samples grown via metal-organic chemical vapor deposition (MOCVD) is investigated through room temperature photoluminescence (PL) and Hall and secondary ion mass spectroscopy (SIMS) measurements. It is found that there is an interaction between the residual hydrogen and carbon impurities. An increase of the carbon doping concentration can increase resistivity of the p-GaN and weaken blue luminescence (BL) band intensity.

View Article and Find Full Text PDF

A new method to grow Indium quantum dots (In QDs) on the surface of an epitaxial InGaN layer by MOCVD is proposed. Uniform-sized In quantum dots have been found to form on the surface of an InGaN layer when a two-step cooling process is taken. Through analyzing, we found that the formation of In QDs on the surface is due to the reaction between the surface In-rich layer and the carrier gas H at the lower temperature period in the two-step cooling process.

View Article and Find Full Text PDF

The InGaN/GaN multi-quantum wells (MQWs) are prepared at the same condition by metal-organic chemical vapor deposition (MOCVD) except the thickness of cap layers additionally grown on each InGaN well layer. The photoluminescence (PL) intensity of the thin cap layer sample is much stronger than that of thicker cap layer sample. Interestingly, the thick cap layer sample has two photoluminescence peaks under high excitation power, and the PL peak energy-temperature curves show an anomalous transition from reversed V-shaped to regular S-shaped with increasing excitation power.

View Article and Find Full Text PDF

Both yellow luminescence (YL) and blue luminescence (BL) bands of GaN films have been investigated for decades, but few works report the relationship between them. In this study, two sets of GaN samples grown via metalorganic chemical vapor deposition (MOCVD) were investigated. A close relationship was found between the YL and BL bands for unintentionally doped GaN and Si-doped GaN samples, both of which were grown without intentional acceptor doping.

View Article and Find Full Text PDF

A photoelectrochemical catechol sensor using BiPO nanocrystals/BiOI (BiPO/BiOI) heterojunction is developed. BiPO/BiOI heterojunction is fabricated via a simple one-step solvothermal method with KI and ionic liquid 1-octyl-3-methylimidazolium dihydrogen phosphate ([Omim]HPO). An enhanced photoelectrochemical separation efficiency is obtained due to the synergistic effect between the formation of BiPO/BiOI heterojunction and shortening the transmission path of the electron to the surface caused by BiPO nanocrystals.

View Article and Find Full Text PDF

Yellow luminescence (YL) of unintentionally doped GaN (u-GaN) peaking at about 2.2 eV has been investigated for decades, but its origin still remains controversial. In this study, ten u-GaN samples grown via metalorganic chemical vapor deposition (MOCVD) are investigated.

View Article and Find Full Text PDF

It is generally known that pollution by 4-chlorophenol (4-CP) raises environmental concerns owing to the high toxicity of 4-CP. The necessity for determining and controlling the presence of 4-CP in the aqueous environment to achieve good water-quality objectives is now well recognized. Thus, a sensitive photoelectrochemical (PEC) sensing platform was fabricated on the basis of a BiPO4 nanocrystal/BiOBr (BiPO4/BiOBr) heterojunction for monitoring 4-CP.

View Article and Find Full Text PDF

Twelve InGaN MQW LED samples with varying well thickness grown via metal-organic chemical vaper deposition (MOCVD) are investigated. It is observed from electroluminescence (EL) measurement that at low current densities, the peak energy shifts to blue with increasing current, and when the current change by fixed increment, the peak energy shifts to blue end to different extent among samples. This blue shift was expected to be stronger when the well thickness increases, however, for well widths above 5 nm we observe a decrease in emission energy.

View Article and Find Full Text PDF

Research on hexagonal boron nitride (hBN) has been intensified recently due to the application of hBN as a promising system of single-photon emitters. To date, the single photon origin remains under debate even though many experiments and theoretical calculations have been performed. We have measured the pressure-dependent photoluminescence (PL) spectra of hBN flakes at low temperatures by using a diamond anvil cell device.

View Article and Find Full Text PDF

As a broad-spectrum antibiotic, tetracycline (TC) is widely used in agricultural purposes and human therapy. More attention is paid to TC as a serious threat to human health, including the fast spreading of antibiotic resistance gene and the serious toxicity to aquatic organisms. Therefore, the timely and accurate determination of TC residues is an urgent task to protect the safety of human.

View Article and Find Full Text PDF

Two InGaN/GaN multiple-quantum-well (MQW) samples with identical epitaxial structures are grown at different growth rates via metal-organic chemical vapor deposition system. The room temperature photoluminescence intensity of the fast-grown sample is much stronger than that of the slow-grown one. In addition, the fast-grown sample has two luminescence peaks at low temperatures, and the height of main peak anomalously increases with increasing temperature below 100 K.

View Article and Find Full Text PDF

The influence of residual carbon impurities incorporated into a heavily Mg-doped GaN layer has been studied systematically according to the relation between the carbon concentration and specific contact resistance. Furthermore, the results of temperature-dependent current-voltage characteristics and the photoluminescence spectra indicate that a proper concentration of residual carbon impurities can improve the performance of Ohmic contact by introducing deep-level defects to enhance the variable-range-hopping conduction.

View Article and Find Full Text PDF

The energy band structures and related room temperature exciton transitions of monolayer and bilayer tungsten diselenide (WSe2) are investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5.42 GPa. For monolayer WSe2, it is found that the conduction band Λ valley is 70 ± 30 meV higher than the K valley at zero pressure, and the K-Λ valley crossover happens at a pressure of approximately 2.

View Article and Find Full Text PDF

In two-dimensional transition-metal dichalcogenides, both spin-orbit coupling and interlayer coupling play critical roles in the electronic band structure and are desirable for the potential applications in spin electronics. Here, we demonstrate the pressure characteristics of the exciton absorption peaks (so-called excitons A, B and C) in monolayer, bilayer, and trilayer molybdenum disulfide (MoS2) by studying the reflectance spectra under hydrostatic pressure and performing the electronic band structure calculations based on density functional theory to account for the experimental observations. We find that the valence band maximum splitting at the K point in monolayer MoS2, induced by spin-orbit coupling, remains almost unchanged with increasing pressure applied up to 3.

View Article and Find Full Text PDF

We demonstrate a distributed sensing network with 500 identical ultra-weak fiber Bragg gratings (uwFBGs) in an equal separation of 2m using balanced Michelson interferometer of the phase sensitive optical time domain reflectometry (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response and location information can be directly obtained at the same time by using the passive 3 × 3 coupler demodulation. Lab experiments on detecting sound waves in water tank are carried out.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the representative MoS2, WS2, WSe2 and MoSe2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atoms within each layer in 2D TMDs are joined together by covalent bonds, while van der Waals interactions keep the layers together.

View Article and Find Full Text PDF