Publications by authors named "Desarmenien M"

Article Synopsis
  • The study investigates how the symptoms of social signal processing in Prader-Willi Syndrome (PWS) can be influenced by neuropeptides oxytocin (OXT) and vasopressin (AVP), particularly focusing on their effects in the lateral septum (LS) of the brain.
  • It uses a mouse model with a knockout of the Magel2 gene, employing various experimental techniques to observe the role of OXT and AVP in social-fear situations and identify neuronal pathways involved.
  • The findings reveal that deficits in OXT and AVP signaling lead to disrupted social-fear responses by affecting certain inhibitory neurons in the LS, providing insights that could pave the way for new treatment strategies for autism spectrum disorders.
View Article and Find Full Text PDF

Confronting oxytocin and vasopressin deficits in autism spectrum disorders and rare syndromes brought promises and disappointments for the treatment of social disabilities. We searched downstream of oxytocin and vasopressin for targets alleviating social deficits in a mouse model of Prader-Willi syndrome and Schaaf-Yang syndrome, both associated with high prevalence of autism. We found a population of neurons in the lateral septum-activated on termination of social contacts-which oxytocin and vasopressin inhibit as per degree of peer affiliation.

View Article and Find Full Text PDF

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown.

View Article and Find Full Text PDF

Intellectual and social disabilities are common comorbidities in adolescents and adults with MAGE family member L2 (MAGEL2) gene deficiency characterizing the Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. The cellular and molecular mechanisms underlying the risk for autism in these syndromes are not understood. We asked whether vasopressin functions are altered by MAGEL2 deficiency and whether a treatment with vasopressin could alleviate the disabilities of social behavior.

View Article and Find Full Text PDF

Stress can either promote or impair learning and memory. Such opposing effects depend on whether synapses persist or decay after learning. Maintenance of new synapses formed at the time of learning upon neuronal network activation depends on the stress hormone-activated glucocorticoid receptor (GR) and neurotrophic factor release.

View Article and Find Full Text PDF

The progress of intensive care medicine allows the survival of patients with severe critical illness. However, the quality of life of patients with a prolonged stay in intensive care unit (ICU) can be poor. The physical and psychological consequences are due more to the intensive care than the primary diagnoses.

View Article and Find Full Text PDF

It is now accepted that vasopressin, through V/V receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V markers.

View Article and Find Full Text PDF

Oxytocin plays a role in various functions including endocrine and immune functions but also parent-infant bonding and social interactions. It might be considered as a main neuropeptide involved in mediating the regulation of adaptive interactions between an individual and his/her environment. Recently, a critical role of oxytocin in early life has been revealed in sensory processing and multi-modal integration that are essential for normal postnatal neurodevelopment.

View Article and Find Full Text PDF

Advances in intensive care medicine have created a new disease called the chronic critical illness. While a significant proportion of severely ill patients who twenty years ago would have died survive the acute phase, they remain heavily dependent on intensive care for a prolonged period of time. These patients, who can be called "Patient Long Séjour" in French (PLS) or Prolonged Length of Stay patients in English, develop specific health issues that are still poorly recognised.

View Article and Find Full Text PDF

Unlabelled: Although we are beginning to understand the late stage of neurodegenerative diseases, the molecular defects associated with the initiation of impaired cognition are poorly characterized. Here, we demonstrate that in the adult brain, the coxsackievirus and adenovirus receptor (CAR) is located on neuron projections, at the presynapse in mature neurons, and on the soma of immature neurons in the hippocampus. In a proinflammatory or diseased environment, CAR is lost from immature neurons in the hippocampus.

View Article and Find Full Text PDF

To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions.

View Article and Find Full Text PDF

Background: Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth.

Methods: We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain.

View Article and Find Full Text PDF

Oxytocin (OT), the main neuropeptide of sociality, is expressed in neurons exclusively localized in the hypothalamus. During the last decade, a plethora of neuroendocrine, metabolic, autonomic and behavioral effects of OT has been reported. In the urgency to find treatments to syndromes as invalidating as autism, many clinical trials have been launched in which OT is administered to patients, including adolescents and children.

View Article and Find Full Text PDF

Elucidating the mechanisms whereby neuroendocrine tissues coordinate their input and output signals to ensure appropriate hormone secretion is currently a topical issue. In particular, whether a direct communication mediated by gap junctions between neurosecretory cells contributes to hormone release in vivo still remains unknown. Here we address this issue using a microsurgical approach allowing combined monitoring of adrenal catecholamine secretion and splanchnic nerve stimulation in anaesthetised mice.

View Article and Find Full Text PDF

Background And Purpose: Distinct vasopressin receptors are involved in different physiological and behavioural functions. Presently, no selective agonist is available to specifically elucidate the functional roles of the V1A receptor in the rat, one of the most widely used animal models. FE 201874 is a new derivative of the human selective V1A receptor agonist F180.

View Article and Find Full Text PDF

Growing evidence points to vasopressin (AVP) as a social behavior regulator modulating various memory processes and involved in pathologies such as mood disorders, anxiety and depression. Accordingly, AVP antagonists are actually envisaged as putative treatments. However, the underlying mechanisms are poorly characterized, in particular the influence of AVP on cellular or synaptic activities in limbic brain areas involved in social behavior.

View Article and Find Full Text PDF

An increase in circulating catecholamines constitutes one of the mechanisms whereby human body responds to stress. In response to chronic stressful situations, the adrenal medullary tissue exhibits crucial morphological and functional changes that are consistent with an improvement of chromaffin cell stimulus-secretion coupling efficiency. Stimulus-secretion coupling encompasses multiple intracellular (chromaffin cell excitability, Ca(2+) signaling, exocytosis, endocytosis) and intercellular pathways (splanchnic nerve-mediated synaptic transmission, paracrine and endocrine communication, gap junctional coupling), each of them being potentially subjected to functional remodeling upon stress.

View Article and Find Full Text PDF

The traditional understanding of stimulus-secretion coupling in adrenal neuroendocrine chromaffin cells states that catecholamines are released upon trans-synaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. Although this statement remains largely true, it deserves to be tempered. In addition to its neurogenic control, catecholamine secretion also depends on a local gap junction-mediated communication between chromaffin cells.

View Article and Find Full Text PDF

The adrenal medullary tissue contributes to maintain body homeostasis in reaction to stressful environmental changes via the release of catecholamines into the blood circulation in response to splanchnic nerve activation. Accordingly, chromaffin cell stimulus-secretion coupling undergoes temporally restricted periods of anatomo- functional remodeling in response to prevailing hormonal requirements of the organism. The postnatal development of the adrenal medulla and response to stress are remarkable physiological situations in which the stimulus- secretion coupling is critically affected.

View Article and Find Full Text PDF

Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion.

View Article and Find Full Text PDF

Growth hormone (GH) exerts its actions via coordinated pulsatile secretion from a GH cell network into the bloodstream. Practically nothing is known about how the network receives its inputs in vivo and releases hormones into pituitary capillaries to shape GH pulses. Here we have developed in vivo approaches to measure local blood flow, oxygen partial pressure, and cell activity at single-cell resolution in mouse pituitary glands in situ.

View Article and Find Full Text PDF

The current view of stimulation-secretion coupling in adrenal neuroendocrine chromaffin cells holds that catecholamines are released upon transsynaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. However, this traditional vertical scheme would merit to be revisited in the light of recent data. Although electrical discharges invading the splanchnic nerve endings are the major physiological stimulus to trigger catecholamine release in vivo, growing evidence indicates that intercellular chromaffin cell communication mediated by gap junctions represents an additional route by which biological signals (electrical activity, changes in intracellular Ca(2+) concentration,.

View Article and Find Full Text PDF