We report on the low-frequency current fluctuations and electronic noise in thin-films made of Bi(2)Se(3) topological insulators. The films were prepared via the "graphene-like" mechanical exfoliation and used as the current conducting channels in the four- and two-contact devices. The thickness of the films ranged from ∼50 to 170 nm to avoid hybridization of the top and bottom electron surface states.
View Article and Find Full Text PDFPractical applications of graphene require a reliable high-throughput method of graphene identification and quality control, which can be used for large-scale substrates and wafers. We have proposed and experimentally tested a fast and fully automated approach for determining the number of atomic planes in graphene samples. The procedure allows for in situ identification of the borders of the regions with the same number of atomic planes.
View Article and Find Full Text PDFPatterning of biomolecules on graphene layers could provide new avenues to modulate their electrical properties for novel electronic devices. Single-stranded deoxyribonucleic acids (ssDNAs) are found to act as negative-potential gating agents that increase the hole density in single-layer graphene. Current-voltage measurements of the hybrid ssDNA/graphene system indicate a shift in the Dirac point and "intrinsic" conductance after ssDNA is patterned.
View Article and Find Full Text PDFBismuth telluride (Bi(2)Te(3)) and its alloys are the best bulk thermoelectric materials known today. In addition, stacked quasi-two-dimensional (2D) layers of Bi(2)Te(3) were recently identified as promising topological insulators. In this Letter we describe a method for "graphene-inspired" exfoliation of crystalline bismuth telluride films with a thickness of a few atoms.
View Article and Find Full Text PDFWe report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.
View Article and Find Full Text PDF