Publications by authors named "DesJarlais R"

Human dose prediction (HDP) is a useful tool for compound optimization in preclinical drug discovery. We describe here our exclusively in silico HDP strategy to triage compound designs for synthesis and experimental profiling. Our goal is a model that provides a preliminary estimate of the dose for a given exposure target based on chemical structure.

View Article and Find Full Text PDF

Free energy perturbation (FEP) methodologies have become commonplace methods for modeling potency in hit-to-lead and lead optimization stages of drug discovery. The conformational states of the initial poses of compounds for FEP+ calculations are often set up by alignment to a cocrystal structure ligand, but it is not clear if this method provides the best result for all proteins or all ligands. Not only are ligand conformational states potential variables in modeling compound potency in FEP but also the selection of crystallographic water molecules for inclusion in the FEP input structures can impact FEP models.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. ASIC gating is modulated by divalent cations as well as small molecules; however, the molecular determinants of gating modulation by divalent cations are not well understood. Previously, we identified two small molecules that bind to ASIC1a at a novel site in the acidic pocket and modulate ASIC1 gating in a manner broadly resembling divalent cations, raising the possibility that these small molecules may help to illuminate the molecular determinants of gating modulation by divalent cations.

View Article and Find Full Text PDF

Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms.

View Article and Find Full Text PDF

Drug discovery building blocks available commercially or within an internal inventory cover a diverse range of chemical space and yet describe only a tiny fraction of all chemically feasible reagents. Vendors will eagerly provide tools to search the former; there is no straightforward method of mining the latter. We describe a procedure and use case in assembling chemical structures not available for purchase but that could likely be synthesized in one robust chemical transformation starting from readily available building blocks.

View Article and Find Full Text PDF

Accurate prediction of absorption, distribution, metabolism and excretion (ADME) properties can facilitate the identification of promising drug candidates. The authors present the Janssen generic Target Product Profile (gTPP) model, which predicts 18 early ADME properties, employs a graph convolutional neural network algorithm and was trained on between 1000-10,000 internal data points per predicted parameter. gTPP demonstrated stronger predictive power than pretrained commercial ADME models and automatic model builders.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood.

View Article and Find Full Text PDF

G-protein coupled receptor kinase 2 (GRK2), which is upregulated in the failing heart, appears to play a critical role in heart failure (HF) progression in part because enhanced GRK2 activity promotes dysfunction of β-adrenergic signaling and myocyte death. An orally bioavailable GRK2 inhibitor could offer unique therapeutic outcomes that cannot be attained by current heart failure treatments that directly target GPCRs or angiotensin-converting enzyme. Herein, we describe the discovery of a potent, selective, and orally bioavailable GRK2 inhibitor, 8h, through high-throughput screening, hit-to-lead optimization, structure-based design, molecular modelling, synthesis, and biological evaluation.

View Article and Find Full Text PDF

A tandem one-pot reaction featuring a cross-coupling followed by an intramolecular oxetane ring opening by mild nucleophiles is reported. The overall transformation comprises a carbon-carbon bond formation along with a carbon-heteroatom bond construction providing diverse multicyclic ring systems with a pendant hydroxymethyl handle for further elaboration. This approach constitutes a convergent method for rapid access to various scaffolds.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial intelligence and machine learning are being utilized in predictive chemistry and planning for synthesizing small molecules, which is gaining traction among companies in the field.
  • The Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, made up of MIT and various industry partners, is developing a data-driven synthesis planning program.
  • This perspective discusses the integration of predictive models into medicinal chemistry workflows, their current applications in MLPDS member companies, and the future prospects of this technology.
View Article and Find Full Text PDF

The topic of gender equality within the United States workforce is receiving a great deal of attention. The field of chemistry is no exception and is increasingly focused on taking steps to achieve gender diversity within the chemistry workforce. Over the past several years, many computational chemistry groups within large pharmaceutical companies have realized growth in the number of women, and here we discuss the key factors that we believe have played a role in attracting and retaining the authors of this review as computational chemists in pharma.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is characterized by chronically elevated plasma glucose levels. The inhibition of glucagon-induced hepatic glucose output via antagonism of the glucagon receptor (GCGR) using a small-molecule antagonist is a promising mechanism for improving glycemic control in the diabetic state. The present work discloses the discovery of indazole-based β-alanine derivatives as potent GCGR antagonists through an efficient enantioselective synthesis and structure-activity relationship (SAR) exploration and optimization.

View Article and Find Full Text PDF

A novel series of indazole/indole derivatives were discovered as glucagon receptor (GCGR) antagonists through scaffold hopping based on two literature leads: MK-0893 and LY-2409021. Further structure-activity relationship (SAR) exploration and optimization led to the discovery of multiple potent GCGR antagonists with excellent pharmacokinetic properties in mice and rats, including low systemic clearance, long elimination half-life, and good oral bioavailability. These potent GCGR antagonists could be used for potential treatment of type II diabetes.

View Article and Find Full Text PDF

A novel series of 6-benzhydryl-4-amino-quinolin-2-ones was discovered as cannabinoid type 1 receptor (CBR) inverse agonists based on the high-throughput screening hit, compound 1a. Structure-activity relationships were studied to improve in vitro/in vivo pharmacology and restrict distribution to the peripheral circulation. We adopted several strategies such as increasing topological polar surface area, incorporating discrete polyethylene glycol side chains, and targeting P-glycoprotein (P-gp) to minimize access to the brain.

View Article and Find Full Text PDF

In May and August, 2016, several pharmaceutical companies convened to discuss and compare experiences with Free Energy Perturbation (FEP). This unusual synchronization of interest was prompted by Schrödinger's FEP+ implementation and offered the opportunity to share fresh studies with FEP and enable broader discussions on the topic. This article summarizes key conclusions of the meetings, including a path forward of actions for this group to aid the accelerated evaluation, application and development of free energy and related quantitative, structure-based design methods.

View Article and Find Full Text PDF

Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

View Article and Find Full Text PDF

In 1964, Alfrey and colleagues proposed that acetylation and methylation of histones may regulate RNA synthesis and described "the possibility that relatively minor modifications of histone structure, taking place on the intact protein molecule, offer a means of switching-on or off RNA synthesis at different loci along the chromosome" [Allfrey, V., Faulkner, R., and Mirsky, A.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) studies on a highly potent series of arylamide FMS inhibitors were carried out with the aim of improving FMS kinase selectivity, particularly over KIT. Potent compound 17r (FMS IC50 0.7 nM, FMS cell IC50 6.

View Article and Find Full Text PDF

A small-molecule drug discovery effort can benefit from having several chemical series. Where multiple series are not available, it is often the goal of a project to find novel scaffolds. Structural studies of ligand/protein complexes provide important information on the interactions driving binding.

View Article and Find Full Text PDF

A class of potent inhibitors of colony-stimulating factor-1 receptor (CSF-1R or FMS), as exemplified by 8 and 21, was optimized to improve pharmacokinetic and pharmacodynamic properties and potential toxicological liabilities. Early stage absorption, distribution, metabolism, and excretion assays were employed to ensure the incorporation of druglike properties resulting in the selection of several compounds with good activity in a pharmacodynamic screening assay in mice. Further investigation, utilizing the type II collagen-induced arthritis model in mice, culminated in the selection of anti-inflammatory development candidate JNJ-28312141 (23, FMS IC(50) = 0.

View Article and Find Full Text PDF

Fragment-based drug discovery has emerged over the past 15 years as an effective lead discovery paradigm that is complementary to traditional high-throughput screening. The starting point for fragment-based drug discovery is the identification of low-molecular weight, typically low-affinity compounds that bind to a target of interest. These fragments can then be elaborated by growing or linking to create compounds with high affinity and selectivity.

View Article and Find Full Text PDF

A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol.

View Article and Find Full Text PDF

During efforts to improve the bioavailability of FMS kinase inhibitors 1 and 2, a series of saturated and aromatic 4-heterocycles of reduced basicity were prepared and evaluated in an attempt to also improve the cardiovascular safety profile over lead arylamide 1, which possessed ion channel activity. The resultant compounds retained excellent potency and exhibited diminished ion channel activity.

View Article and Find Full Text PDF

A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile.

View Article and Find Full Text PDF

A series of novel 5-aminomethyl-1H-benzimidazole based inhibitors of Itk were prepared. Structure-activity relationships, selectivity and cell activity are reported for this series. Compound 2, a potent and selective antagonist of Itk, inhibited anti-CD3 antibody induced IL-2 production in vivo in mice.

View Article and Find Full Text PDF