Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination.
View Article and Find Full Text PDFRuthenium-promoted ring-opening metathesis polymerization (ROMP) offers potentially powerful routes to amine-functionalized polymers with antimicrobial, adhesive, and self-healing properties. However, amines readily degrade the methylidene and unsubstituted ruthenacyclobutane intermediates formed in metathesis of terminal olefins. Examined herein is the relevance of these decomposition pathways to ROMP (i.
View Article and Find Full Text PDFRuthenium catalysts bearing cyclic (alkyl)(amino)carbene (CAAC) ligands can attain very high productivities in olefin metathesis, owing to their resistance to unimolecular decomposition. Because the propagating methylidene species RuCl(CAAC)(=CH) is extremely susceptible to bimolecular decomposition, however, turnover numbers in the metathesis of terminal olefins are highly sensitive to catalyst concentration, and hence loadings. Understanding how, why, and how rapidly the CAAC complexes partition between the precatalyst and the active species is thus critical.
View Article and Find Full Text PDFWater is ubiquitous in olefin metathesis, at levels ranging from contaminant to cosolvent. It is also non-benign. Water-promoted catalyst decomposition competes with metathesis, even for "robust" ruthenium catalysts.
View Article and Find Full Text PDFRuthenium-cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru-CAAC and Ru-NHC catalysts.
View Article and Find Full Text PDFClean, high-yielding routes are described to ruthenium-diiodide catalysts that were recently shown to enable high productivity in olefin metathesis. For the second-generation Grubbs and Hoveyda catalysts (: RuCl(HIMes)(PCy)(=CHPh); : RuCl(HIMes)(=CHAr), Ar = CH-2-O Pr), slow salt metathesis is shown to arise from the low lability of the ancillary PCy or ether ligands, which retards access to the four-coordinate intermediate required for efficient halide exchange. To exploit the lability of the first-generation catalysts, the diiodide complex RuI(PCy)(=CHAr) was prepared by treating "Grubbs I" (RuCl(PCy)(=CHPh), ) with NaI, HC=CHAr (), and a phosphine-scavenging Merrifield iodide () resin.
View Article and Find Full Text PDFBimolecular catalyst decomposition is a fundamental, long-standing challenge in olefin metathesis. Emerging ruthenium-cyclic(alkyl)(amino)carbene (CAAC) catalysts, which enable breakthrough advances in productivity and general robustness, are now known to be extraordinarily susceptible to this pathway. The details of the process, however, have hitherto been obscure.
View Article and Find Full Text PDFRuthenium catalysts for olefin metathesis are widely viewed as water-tolerant. Evidence is presented, however, that even low concentrations of water cause catalyst decomposition, severely degrading yields. Of 11 catalysts studied, fast-initiating examples (e.
View Article and Find Full Text PDFCritical to advancing the uptake of olefin metathesis in leading contexts, including pharmaceutical manufacturing, is identification of highly active catalysts that resist decomposition. Amines constitute an aggressive challenge to ruthenium metathesis catalysts. Examined here is the impact of 1,8-diazabicyclo[5.
View Article and Find Full Text PDFExamined herein is the basis for the outstanding metathesis productivity of leading cyclic alkyl amino carbene (CAAC) catalysts relative to their important N-heterocyclic carbene (NHC) predecessors, as recently demonstrated in the topical contexts of metathesis macrocyclization and the ethenolysis of renewable oils. The difference is traced to the stability to decomposition of the metallacyclobutane (MCB) intermediate. The CAAC catalysts are shown to undergo little to no β-H elimination of the MCB ring, a pathway to which the HIMes catalysts are highly susceptible.
View Article and Find Full Text PDFAccess to leading olefin metathesis catalysts, including the Grubbs, Hoveyda, and Grela catalysts, ultimately rests on the nonscaleable transfer of a benzylidene ligand from an unstable, impure aryldiazomethane. The indenylidene ligand can be reliably installed, but to date yields much less reactive catalysts. A fast-initiating, dimeric indenylidene complex () is reported, which reconciles high activity with scaleable synthesis.
View Article and Find Full Text PDFThe correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl(L)(═CHCH- o-O Pr); the Grela catalyst nG (a derivative of HII with a nitro group para to O Pr); the Piers catalyst PII, [RuCl(L)(═CHPCy)]OTf; the third-generation Grubbs catalyst GIII, RuCl(L)(py)(═CHPh); and dianiline catalyst DA, RuCl(L)( o-dianiline)(═CHPh), in all of which L = HIMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl(HIMes)(κ-CH), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca.
View Article and Find Full Text PDFRing-closing metathesis (RCM) offers versatile catalytic routes to macrocycles, with applications ranging from perfumery to production of antiviral drugs. Unwanted oligomerization, however, is a long-standing challenge. Oligomers can be converted into the cyclic targets by catalysts that are sufficiently reactive to promote backbiting (e.
View Article and Find Full Text PDFBrønsted bases of widely varying strength are shown to decompose the metathesis-active Ru intermediates formed by the second-generation Hoveyda and Grubbs catalysts. Major products, in addition to propenes, are base·HCl and olefin-bound, cyclometalated dimers [RuCl(κ-HIMes-H)(HC═CHR)] Ru-3. These are generated in ca.
View Article and Find Full Text PDFSterically accessible Lewis donors are shown to accelerate decomposition during catalysis, for a broad range of Grubbs-class metathesis catalysts. These include benzylidene derivatives RuCl(NHC)(PCy)(═CHPh) (Ru-2: NHC = HIMes, a; IMes, b; HIPr, c; IPr, d; HITol, e) and indenylidene complexes RuCl(NHC)(PCy)(═CH) (NHC = HIMes, Ru-2f; IMes, Ru-2g). All of these precatalysts form methylidene complex RuCl(NHC)(═CH) Ru-3 as the active species in metathesis of terminal olefins, and generate RuCl(NHC)(PCy)(═CH) Ru-4 as the catalyst resting state.
View Article and Find Full Text PDFThe recent uptake of molecular metathesis catalysts in specialty-chemicals and pharmaceutical manufacturing is reviewed.
View Article and Find Full Text PDFStrong σ-donation from NHC ligands (NHC = N-heterocyclic carbene) is shown to have profoundly conflicting consequences for the reactivity of transition-metal catalysts. Such donation is regarded as central to high catalyst activity in many contexts, of which the second-generation Grubbs metathesis catalysts (RuCl(NHC)(PCy)([double bond, length as m-dash]CHPh), ) offer an early, prominent example. Less widely recognized is the dramatically inhibiting impact of NHC ligation on initiation of , and on re-entry into the catalytic cycle from the resting-state methylidene species RuCl(NHC)(PCy)([double bond, length as m-dash]CH), .
View Article and Find Full Text PDFThe diverse applications of acrylate metathesis range from synthesis of high-value α,β-unsaturated esters to depolymerization of unsaturated polymers. Examined here are unexpected side reactions promoted by the important Grubbs catalyst GII. Evidence is presented for attack of PCy3 on the acrylate olefin to generate a reactive carbanion, which participates in multiple pathways, including further Michael addition, proton abstraction, and catalyst deactivation.
View Article and Find Full Text PDFThe new complex Ru(NCO)(2)(IMes)(py)(2)(=CHPh) is the first ruthenium metathesis initiator capable of fast, controlled living polymerization of functionalized norbornenes at room temperature, irrespective of monomer bulk.
View Article and Find Full Text PDFAs society faces a future of dwindling petrochemical supplies at increasing cost, much attention has been focused on methods to degrade biomass into renewable commodity-chemical building blocks. Reported here is a powerful complementary approach that amplifies the complexity of molecular structures present in plant materials. Essential-oil phenylpropenoids are transformed via acrylate cross-metathesis into potent antioxidants that are widely used in perfumery and cosmetics, and in treating disorders associated with oxidative damage.
View Article and Find Full Text PDFThe role of ethylene in promoting metathesis of acetylenic enynes is probed within the context of ring-closing enyne metathesis, using first- and second-generation Grubbs catalysts. Under inert atmosphere, rapid catalyst deactivation is observed by calibrated GC-FID analysis for substrates with minimal propargylic bulk. MALDI-TOF mass spectra reveal a Ru(enyne)(2) derivative that exhibits very low reactivity toward both enyne and ethylene.
View Article and Find Full Text PDFA versatile Ru-BINO building block is reported, which offers a straightforward entry point into the chemistry of atropisomeric binaphtholate complexes of ruthenium. Reaction of RuCl(2)(PPh(3))(3)6a with Tl(2)((S)-BINO) affords Ru((S)-BINO)(PPh(3))(2)7 as a mixture of isomers: in 7', the BINO ligand is bound via η(3)-CCO,η(1)-O' donors, and in symmetrical 7″, via η(3)-CCO,η(3)-O'C'C' interactions. The bis(enolate) BINO bonding mode in the latter, not previously observed for any metal, underscores the remarkable geometric and electronic flexibility of the binaphtholate moiety.
View Article and Find Full Text PDFReported is the first study of the influence of reactor configuration on the efficiency of a challenging ring-closing metathesis (RCM) reaction. With the intention of increasing the generality of RCM scaleup and reducing its dependence on substrate modification, macrocyclization of an unmodified, low effective-molarity diene was explored using different reactor types, in conjunction with a commercial, homogeneous Grubbs catalyst. Optimized performance is compared for a conventional batch reactor (BR), a continuous plug-flow reactor (PFR), and a continuous stirred-tank reactor (CSTR).
View Article and Find Full Text PDF