Publications by authors named "Derycke V"

Monolayers of transition metal dichalcogenides (2D TMDs) experience strong modulation of their optical properties when the charge density is varied. Indeed, the transition from carriers composed mostly of excitons at low electron density to a situation in which trions dominate at high density is accompanied by a significant evolution of both the refractive index and the extinction coefficient. Using optical interference reflection microscopy at the excitonic wavelength, this (, κ)- relationship can be exploited to directly image the electron density in operating TMD devices.

View Article and Find Full Text PDF

This paper explores how the Schottky barrier (SB) transistor is used in a variety of applications and material systems. A discussion of SB formation, current transport processes, and an overview of modeling are first considered. Three discussions follow, which detail the role of SB transistors in high performance, ubiquitous and cryogenic electronics.

View Article and Find Full Text PDF

A simple implementation of Kelvin probe force microscopy (KPFM) is reported that enables recording topographic images in the absence of any component of the electrostatic force (including the static term). Our approach is based on a close loop z-spectroscopy operated in data cube mode. Curves of the tip-sample distance as a function of time are recorded onto a 2D grid.

View Article and Find Full Text PDF

In wheat (Triticum aestivum L) and other cereals, the number of ears per unit area is one of the main yield-determining components. An automatic evaluation of this parameter may contribute to the advance of wheat phenotyping and monitoring. There is no standard protocol for wheat ear counting in the field, and moreover it is time consuming.

View Article and Find Full Text PDF

The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery.

View Article and Find Full Text PDF

The capability to observe 2D materials with optical microscopy techniques is of central importance in the development of the field and is a driving force for the assembly and study of 2D material van der Waals heterostructures. Such an observation of ultrathin materials usually benefits from antireflection conditions associated with the choice of a particular substrate geometry. The most common configuration uses a transparent oxide layer with a thickness minimizing light reflection at the air/substrate interface when light travels from air to the substrate.

View Article and Find Full Text PDF

One of the goals of the French national campaign called "Etablissements Sensibles (Sensitive Establishments)" is to evaluate indoor air degradation in schools because of vapor intrusion of volatile compounds from soil gases towards the indoor air, related to the presence of former industrial sites on or near the establishment. During this campaign, as recommended by the United States of Environmental Protection Agency (US EPA), indoor air quality was evaluated from soil gas concentrations using generic attenuation factors, and extra investigations into soil gases and indoor air were performed when the estimated values exceeded target indoor air concentrations. This study exploits matched data on subsurface soil gases and indoor air that came from the "Sensitive Establishments" campaign.

View Article and Find Full Text PDF

The amazing properties of 2D materials are envisioned to revolutionize several domains such as flexible electronics, electrocatalysis, or biosensing. Herein we introduce scanning electrochemical microscopy (SECM) as a tool to investigate molybdenum disulfide in a straightforward fashion, providing localized information regarding the electronic transport within chemical vapor deposition (CVD)-grown crystalline MoS single layers having micrometric sizes. Our investigations show that within flakes assemblies some flakes are well electrically interconnected, with no detectable contact resistance, whereas others are not electrically connected at all, independent of the size of the physical contact between them.

View Article and Find Full Text PDF

The rapid rise of two-dimensional nanomaterials implies the development of new versatile, high-resolution visualization and placement techniques. For example, a single graphene layer becomes observable on Si/SiO substrates by reflected light under optical microscopy because of interference effects when the thickness of silicon oxide is optimized. However, differentiating monolayers from bilayers remains challenging, and advanced techniques, such as Raman mapping, atomic force microscopy (AFM), or scanning electron microscopy (SEM) are more suitable to observe graphene monolayers.

View Article and Find Full Text PDF

Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials.

View Article and Find Full Text PDF

We present a new strategy to form thickness-adjusted and ultrasmooth films of very large and unwrinkled graphene oxide (GO) flakes through the transfer of both hemispherical and vertical water films stabilized by surfactants. With its versatility in terms of substrate type (including flexible organic substrates) and in terms of flake density (from isolated flakes to continuous and multilayer films), this wafer-scale assembly technique is adapted to a broad range of experiments involving GO and rGO (reduced graphene oxide). We illustrate its use through the evaluation of transparent rGO electrodes.

View Article and Find Full Text PDF

The present work investigates the electronic conduction of reduced graphene oxide flakes and the coupling between flakes through a combined SECM (scanning electrochemical microscopy), AFM, and SEM analysis. Images of individual and interconnected flakes directly reveal the signature of the contact resistance between flakes in a noncontact and substrate-independent way. Quantitative evaluation of the parameters is achieved with the support of numerical simulations to interpret the experimental results.

View Article and Find Full Text PDF

Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters.

View Article and Find Full Text PDF

The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer.

View Article and Find Full Text PDF

Herein, we describe a new localized functionalization method of graphene oxide (GO) deposited on a silicon oxide surface. The functionalization starts with the reduction of GO by electrogenerated naphthalene radical anions. The source of reducers is a microelectrode moving close to the substrate in a typical scanning electrochemical microscopy (SECM) configuration.

View Article and Find Full Text PDF

In order to assess the impact of crop rotation and nitrogen fertilisation in an agro system, a long-term field experiment has been established in 2006 at the experimental farm of Ghent University and University College Ghent (Bottelare-Belgium). The trial comprises 11 different crop rotations in combination with four nitrogen fertilizer regimes. The different crop rotations are monoculture of grain- and silage maize, whether or not followed by Italian ryegrass, permanent and temporary grass-clover and six other rotations of maize in combination with potatoes, wheat, fodder beet and peas.

View Article and Find Full Text PDF

The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build ground-breaking circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of the neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We show here that carbon-nanotube-based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm.

View Article and Find Full Text PDF

During five subsequent growing seasons field experiments were carried out at the experimental farm of the University College Ghent (Belgium) to evaluate the selectivity and efficacy of herbicides for chemical weed control in triticale (x Triticosecale Wittmack). The experiments were set up on a sandy loam soil, according to a completely randomised block design with four replicates. Several herbicides and combinations of herbicides were applied pre- and post-emergence, at different rates.

View Article and Find Full Text PDF

The present article introduces a rapid, very sensitive, contactless method to measure the local surface conductivity with Scanning Electrochemical Microscopy (SECM) and obtain conductivity maps of heterogeneous substrates. It is demonstrated through the study of Graphene Oxide (GO) thin films deposited on glass. The adopted substrate preparation method leads to conductivity disparities randomly distributed over approximately 100 μm large zones.

View Article and Find Full Text PDF

Flexible electronics mostly relies on organic semiconductors but the limited carrier velocity in polymers and molecular films prevents their use at frequencies above a few megahertz. Conversely, the high potential of graphene for high-frequency electronics on rigid substrates was recently demonstrated. We conducted the first study of solution-based graphene transistors at gigahertz frequencies, and we show that solution-based single-layer graphene ideally combines the required properties to achieve high speed flexible electronics on plastic substrates.

View Article and Find Full Text PDF

We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated.

View Article and Find Full Text PDF