Discarded polymeric or ceramic membranes are currently in need of appropriate and sustainable management. In the present study, the direct reuse of discarded ceramic membranes in membrane contactor (MC) systems for CO removal was investigated for the first time. The hydrophobic surface modification of the discarded ceramic membrane was done by using macromolecule additive coating.
View Article and Find Full Text PDFThis paper reviews the current problems and prospects to overcome circular water economy management challenges in European countries. The geopolitical paradigm of water, the water economy, water innovation, water management and regulation in Europe, environmental and safety concerns at water reuse, and technological solutions for water recovery are all covered in this review, which has been prepared in the frame of the COST ACTION (CA, 20133) FULLRECO4US, Working Group (WG) 4. With a Circular Economy approach to water recycling and recovery based on this COST Action, this review paper aims to develop novel, futuristic solutions to overcome the difficulties that the European Union (EU) is currently facing.
View Article and Find Full Text PDFWith decreasing indoor air quality, increased time spent at indoors, and especially with the COVID-19 pandemic, the development of new materials for bacteria and viruses has become even more important. Less material consumption due to the electrospinning process, the easy availability/affordability of the halloysite nanotube (HNT), and the antibacterial effect of both TiO and ZnO nanoparticles make the study even more interesting. HNTs have attracted research attention in recent years due to their low cost, high mechanical strength, natural and environmentally friendly structure, and non-toxicity to human health and ecosystem.
View Article and Find Full Text PDFVolatile fatty acids (VFAs) produced during anaerobic digestion (AD) of organic waste are a promising alternative carbon source for various biological processes; however, their applications are limited due to the presence of impurities such as ammonium (NH). This study investigates the potential for removal of ammonium using a naturally occurring zeolite (clinoptilolite) from chicken manure (CKM) derived VFA effluent recovered from an anaerobic membrane bioreactor (MBR). Experiments were conducted for both synthetic and actual VFA (AD-VFA) solutions, and the effects of different parameters were investigated with batch and continuous studies.
View Article and Find Full Text PDFFossil-based materials such as methanol are frequently used in the denitrification process of advanced biological wastewater treatment as external carbon source. Volatile fatty acids (VFAs) produced by anaerobic digestion of food waste, are sustainable compounds with the potential to act as carbon sources for denitrification, reducing carbon footprint and material costs. In this study, the effectiveness of food waste-derived VFAs (AD-VFA) was investigated in the post-denitrification process in comparison with synthetic VFA and methanol as carbon sources.
View Article and Find Full Text PDFSustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment.
View Article and Find Full Text PDFA new and facile method for the fabrication of polysulfone-graphene oxide composite membranes is reported, where after casting, phase inversion is carried out with graphene oxide flakes (GO) in a coagulation bath. The membranes were characterized and the morphology was analysed using scanning electron microscopy. A bacterial inhibition ratio of 74.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements.
View Article and Find Full Text PDFThe immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe(2+)) to ferric iron (Fe(3+)). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene-divinylbenzene) copolymer (rawSDVB), raw poly(styrene-divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene-divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene-divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe(2+) biooxidation.
View Article and Find Full Text PDFThe objective of this study was to investigate the influence of sludge retention time (SRT) on membrane bio-fouling. An activated sludge reactor was operated at three different SRTs (10, 30, and 50 days). Submerged membrane experiments were performed when the mixed liquor suspended solids (MLSS) concentration reached the steady state conditions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2012
In this study, the surface of cellulose acetate (CA) ultrafiltration membrane was activated with serine protease (Savinase) enzyme to reduce protein fouling. Enzyme molecules were covalently immobilized with glutaraldehyde (cross-linking agent) onto the surface of CA membranes. The membrane activation was verified using filtration experiments and morphological analysis.
View Article and Find Full Text PDFThe effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs.
View Article and Find Full Text PDF