Introduction: The earliest changes in the brain due to Alzheimer's disease are associated with the neural networks related to memory function. We investigated changes in functional and structural connectivity among regions that support memory function in prodromal Alzheimer's disease, i.e.
View Article and Find Full Text PDFAlzheimer's disease (AD) and its prodromal state amnestic mild cognitive impairment (aMCI) are characterized by widespread abnormalities in inter-areal white matter fiber pathways and parallel disruption of default mode network (DMN) resting state functional and effective connectivity. In healthy subjects, DMN and task positive network interaction are modulated by the thalamus suggesting that abnormal task-based DMN deactivation in aMCI may be a consequence of impaired thalamo-cortical white matter circuitry. Thus, this article uses a multimodal approach to assess white matter integrity between thalamus and DMN components and associated effective connectivity in healthy controls (HCs) relative to aMCI patients.
View Article and Find Full Text PDFThe aim of this study was to investigate the aging-related structural changes of the cingulum, one of the major components of the limbic network, which has a critical role in emotion, attention, and memory. Thirty-five healthy young adults (22.3 ± 2.
View Article and Find Full Text PDFIn this study, we wished to examine the relationship between the structural connectivity of the fornix, a white matter (WM) tract in the limbic system, which is affected in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease, and the resting-state functional connectivity (FC) of two key related subcortical structures, the thalamus, and hippocampus. Twenty-two older healthy controls (HC) and 18 older adults with aMCI underwent multi-modal MRI scanning. The fornix was reconstructed using constrained-spherical deconvolution-based tractography.
View Article and Find Full Text PDF