Publications by authors named "Derrick Rancourt"

is a human-restricted bacteria that is a normal nasopharyngeal resident, yet it can also disseminate, causing invasive meningococcal disease. Meningococci are highly adapted to life in humans, with human-specific virulence factors contributing to bacterial adhesion, nutrient acquisition and immune evasion. While these factors have been explored in isolation, their relative contribution during infection has not been considered due to their absence in small animal models and their expression by different human cell types not readily combined in either or systems.

View Article and Find Full Text PDF

Background: While pluripotent stem cell (PSC) therapies move toward clinical and commercial applications at a rapid rate, manufacturing reproducibility and robustness are notable bottlenecks in regulatory approval. Therapeutic applications of PSCs require large cell quantities to be generated under highly robust, well-defined, and economically viable conditions. Small-scale and short-term process optimization, however, is often performed in a linear fashion that does not account for time needed to verify the bioprocess protocols and analysis methods used.

View Article and Find Full Text PDF

Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor, Y-27632 can enhance hPSC survival and proliferation at high seeding density, dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory.

View Article and Find Full Text PDF
Article Synopsis
  • Sus scrofa domesticus (pigs) are valuable for biomedical research due to their physiological similarities to humans, making them excellent models for studying regenerative biology.
  • Researchers developed transgene-free porcine induced pluripotent stem cells (PiPSCs) from pig fibroblasts using targeted protocols, allowing these cells to differentiate into various cell types and maintain their species-specific developmental characteristics.
  • The establishment of a porcine in vitro segmentation clock model highlights the potential of transgene-free PiPSCs for advancing our understanding of mammalian development and disease while offering new avenues for transplantation research.
View Article and Find Full Text PDF

Oncolytic viruses (OVs) are an emerging cancer therapeutic that are intended to act by selectively targeting and lysing cancerous cells and by stimulating anti-tumour immune responses, while leaving normal cells mainly unaffected. Reovirus is a well-studied OV that is undergoing advanced clinical trials and has received FDA approval in selected circumstances. However, the mechanisms governing reoviral selectivity are not well characterised despite many years of effort, including those in our accompanying paper where we characterize pathways that do not consistently modulate reoviral cytolysis.

View Article and Find Full Text PDF

Promoting bone healing including fracture non-unions are promising targets for bone tissue engineering due to the limited success of current clinical treatment methods. There has been significant research on the use of stem cells with and without biomaterial scaffolds to treat bone fractures due to their promising regenerative capabilities. However, the relative roles of exogenous vs.

View Article and Find Full Text PDF

Skin is an easily accessible tissue and a rich source of Schwann cells (SCs). Toward potential clinical application of autologous SC therapies, we aim to improve the reliability and specificity of our protocol to obtain SCs from small skin samples. As well, to explore potential functional distinctions between skin-derived SCs (Sk-SCs) and nerve-derived SCs (N-SCs), we used single-cell RNA-sequencing and a series of in vitro and in vivo assays.

View Article and Find Full Text PDF

Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility.

View Article and Find Full Text PDF

Progress in extracellular vesicle (EV) research over the past two decades has generated significant interest in using EVs in the biomedical field. Exosomes are a subgroup of EVs that comprise endocytic membrane-bound nanovesicles of 40 to 160 nm diameter. These vesicles have been shown to facilitate intercellular communication via the delivery of cellular molecules.

View Article and Find Full Text PDF

Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway.

View Article and Find Full Text PDF

The expansion of pluripotent stem cells (PSCs) as aggregates in stirred suspension bioreactors is garnering attention as an alternative to adherent culture. However, the hydrodynamic environment in the bioreactor can modulate PSC behavior, pluripotency and differentiation potential in ways that need to be well understood. In this study, we investigated how murine embryonic stem cells (mESCs) sense fluid shear stress and modulate a noncanonical Wnt signaling response to promote pluripotency.

View Article and Find Full Text PDF

Background: Human induced pluripotent stem cells (hiPSCs) hold enormous promise in accelerating breakthroughs in understanding human development, drug screening, disease modeling, and cell and gene therapies. Their potential, however, has been bottlenecked in a mostly laboratory setting due to bioprocess challenges in the scale-up of large quantities of high-quality cells for clinical and manufacturing purposes. While several studies have investigated the production of hiPSCs in bioreactors, the use of conventional horizontal-impeller, paddle, and rocking-wave mixing mechanisms have demonstrated unfavorable hydrodynamic environments for hiPSC growth and quality maintenance.

View Article and Find Full Text PDF

Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson's disease, or diabetes, etc.

View Article and Find Full Text PDF

Purpose: Congenital stationary night blindness 2A (CSNB2A) is a genetic retinal disorder characterized by poor visual acuity, nystagmus, strabismus, and other signs of retinal dysfunction resulting from mutations in the gene coding for the pore-forming subunit of the calcium channel Ca1.4. Mouse models of CSNB2A have shown that mutations causing the disease deleteriously affect photoreceptors and their synapses with second-order neurons.

View Article and Find Full Text PDF

Due to their ability to standardize key physiological parameters, stirred suspension bioreactors can potentially scale the production of quality-controlled pluripotent stem cells (PSCs) for cell therapy application. Because of differences in bioreactor expansion efficiency between mouse (m) and human (h) PSCs, we investigated if conversion of hPSCs, from the conventional "primed" pluripotent state towards the "naïve" state prevalent in mPSCs, could be used to enhance hPSC production. Through transcriptomic enrichment of mechano-sensing signaling, the expression of epigenetic regulators, metabolomics, and cell-surface protein marker analyses, we show that the stirred suspension bioreactor environment helps maintain a naïve-like pluripotent state.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) have generated a great deal of attention owing to their capacity for self-renewal and differentiation into the three germ layers of the body. Their discovery has facilitated a new era in biomedicine for understanding human development, drug screening, disease modeling, and cell therapy while reducing ethical issues and risks of immune rejection associated with traditional embryonic stem cells. Bioreactor-based processes have been the method of choice for the efficient expansion and differentiation of stem cells in controlled environments.

View Article and Find Full Text PDF

Background: Dilated cardiomyopathy with ataxia syndrome (DCMA) is an understudied autosomal recessive disease caused by loss-of-function mutations in the poorly characterized gene DNAJC19. Clinically, DCMA is commonly associated with heart failure and early death in affected children through an unknown mechanism. DCMA has been linked to Barth syndrome, a rare but well-studied disorder caused by deficient maturation of cardiolipin (CL), a key mitochondrial membrane phospholipid.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) have almost unlimited proliferation capacity in vitro and can retain the ability to contribute to all cell lineages, making them an ideal platform material for cell-based therapies. ESCs are traditionally cultured in static flasks on a feeder layer of murine embryonic fibroblast cells. Although sufficient to generate cells for research purposes, this approach is impractical to achieve large quantities for clinical applications.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative disease of the hyaline articular cartilage. This disease is progressive and may lead to disability. Researchers proposed many regenerative approaches to treat osteoarthritis, including stem cells.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) are prone to anoikis after single cell dissociation. The small molecule, Y-27632 is known to increase survival of hESCs and hiPSCs by inhibiting the Rho-associated protein kinase (ROCK). However, the underlying mechanisms are still unclear.

View Article and Find Full Text PDF

Computational fluid dynamics (CFD) modeling can be applied to understand hydrodynamics in stirred suspension bioreactors, which can in turn affect cell viability, proliferation, pluripotency and differentiation. In this study, we developed a CFD model to determine the effects of average shear rates and turbulent eddies on the formation and growth of murine embryonic stem cell aggregates. We found a correlation between average eddy size and aggregate size, which depended on bioreactor agitation rates.

View Article and Find Full Text PDF

Bone development and homeostasis are intricate processes that require co-existence and dynamic interactions among multiple cell types. However, controlled dynamic niches that derive and support stable propagation of these cells from single stem cell source is not sustainable in conventional culturing vessels. In bioreactor cultures that support dynamic niches, the limited source and stability of growth factors are often a major limiting factor for long-term in vitro cultures.

View Article and Find Full Text PDF

Now that induced pluripotent stem cell (iPSC)-based transplants have been performed in humans and organizations have begun producing clinical-grade iPSCs, it is imperative that strict quality control standards are agreed upon. This is essential as both ESCs and iPSCs have been shown to accumulate genomic aberrations during long-term culturing. These aberrations can include copy number variations, trisomy, amplifications of chromosomal regions, deletions of chromosomal regions, loss of heterozygosity, and epigenetic abnormalities.

View Article and Find Full Text PDF

Oncolytic viruses show intriguing potential as cancer therapeutic agents. These viruses are capable of selectively targeting and killing cancerous cells while leaving healthy cells largely unaffected. The use of oncolytic viruses for cancer treatments in selected circumstances has recently been approved by the Food and Drug Administration (FDA) of the US and work is progressing on engineering viral vectors for enhanced selectivity, efficacy and safety.

View Article and Find Full Text PDF

Recent advances in stem cell biology have accelerated the pre-clinical development of cell-based therapies for degenerative and chronic diseases. The success of this growing area hinges upon the concomitant development of scalable manufacturing platforms that can produce clinically relevant quantities of cells for thousands of patients. Current biomanufacturing practices for cell therapy products are built on a model previously optimized for biologics, wherein stable cell lines are established first, followed by large-scale production in the bioreactor.

View Article and Find Full Text PDF